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Problem: is ax2 + bxy + cy2 + g = 0 solvable over Fq [t] ?
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Problem: is ax2 + bxy + cy2 + g = 0 solvable over Fq [t] ?

Binary quad. forms over Fq[t]

Let k = Fq, F = k(t) rational func. field, oF = k[t] the poly.
ring.

Fix a, b, c and d in oF , and consider the diophantine eq. def.
by the bin. quad. form

ax2 + bxy + cy2 + g = 0.

Problem: when does it sovable over oF ?
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Problem: is ax2 + bxy + cy2 + g = 0 solvable over Fq [t] ?

An example

Example 1.1

Consider the eq. over k[t] = F3[t]

− x2 + txy − (t3 − t2 + 1)y2 + g = 0. (1.2)

Write g = u × (t − 1)s1 × (t2 − t − 1)s2 ×
∏r

j=1 p
mj

j , where

u ∈ k×, pr distinct monic irr. poly. in k[t].

Then (1.2) is solvable over k[t] if and only if

(1)
(
g×p−vp (g)

p

)
= (−1)vp(g), for p = t − 1 or t2 − t − 1,

(2)
(−(t−1)(t2−t−1)

p

)
= 1, for p - (t − 1)(t2 − t − 1), vp(g) odd.
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Problem: is ax2 + bxy + cy2 + g = 0 solvable over Fq [t] ?

Another example

Example 1.3

The eq. over k[t] = F3[t]

(t − 1)x2 + (t2 + t − 1)y2 + g = 0. (1.4)

Write q1 = t − 1, q2 = t2 + t − 1 and −d = −q1q2 and define

θ(X ) = X 4 − (t2 − t)X 2 − t3 + 1 ∈ k[t][X ]

(generates certain Galois extension),

D1 = {p |
(−d

p

)
= 1, θ(X ) mod p factors into two irr. polys.},

D2 = {p |
(−d

p

)
= 1, θ(X ) mod p is irr.}

(reflex the splittings of places)
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Problem: is ax2 + bxy + cy2 + g = 0 solvable over Fq [t] ?

Another example (count.)

Example (1.3, count.)

Then (1.4) is solvable over k[t] if and only if

(1)
(
g×p−vp (g)

p

)
= (−1)deg(p), for q1 or q2,

(2)
(−d

p

)
= 1, for p - d with odd vp(g),

(3) either

D2 = ∅ and
∑

p∈{q1,q2}∪D1
vp(g) ≡ 1 (mod 2), or

D2 6= ∅ and
∑

p∈D2
vp(g) ≡ 0 (mod 2).

The conditions (1) and (2) are local,

and (3) is called the Artin condition.

C. Lv Quad. eqs. over func. fields
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Solution: torsors under norm-one tori + class field theory

The reformulation in arith. geometry

Restrictions:

k with char. not 2, −d = (b/2)2 − ac not sqare,

the quad. ext. E = F (
√
−d)/F is imaginary, i.e., there is a

unique place lying over 1/t.

The question is to ask the existence of integral points of the
affine scheme X = Spec(oF [x , y ]/(a(ax2 + bxy + cy2 + g)))
over oF .

General tool: (int.) obstructions to local-global principal.

Observation: x̃ = ax + b
2y , ỹ = y , n = −ag , X : x̃2 + dỹ2 = n,

whose generic fiber admits the structure of a torsor of a torus.

Bonus: we can make use of class field theory.

C. Lv Quad. eqs. over func. fields
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Solution: torsors under norm-one tori + class field theory

Torsors under norm-one tori

Let T = ker(RE/F (Gm,E )
NE/F−→ Gm,F ) (called norm-one torus), and

XF = X ×oF
F the generic fiber.

Intuition: if N(t) = 1 and N(x) = n then N(tx) = n.
 T × XF → XF , making XF a T -torsor.

Fix a rat. pt. P ∈ XF (F ) to obtain φP : XF
∼→ T , whose restriction

to X(oFp
) (int. local pts.) has image in IE (idéle group).

The composition f̃E :
∏

p X(oFp
)→ IE

×P→ IE whose p-component is

f̃E [(xp, yp)] =

{
(x̃p +

√
−dỹp, x̃p −

√
−dỹp) ∈ EP × EP̄ , if p = PP̄ splits in E/F ,

x̃p +
√
−dỹp ∈ EP , otherwise,

where P and P̄ (resp. P) are places of E above p and x̃p = axp + b
2
yp, ỹp = yp.
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Solution: torsors under norm-one tori + class field theory

The sign func. and the positive open subgroup

Let L = oF + oF
√
−d ⊆ oE an order, with completion

Lp = L⊗oF oFp at p.

Let p∞ = 1/t be the place of k(t) at ∞ and P∞ the unique
place in E above p∞.

Fix a sign function sgn : EP∞ → oEP∞
/P∞ (taking the first

non-zero coeff. of the Laurent expansion), and take all the
positive elements E+

P∞
= {α ∈ E×P∞ | sgn(α) = 1} ⊆ E×P∞ .

 an open subgp. Ξ+
P∞

= E+
P∞
×
∏

p6=p∞
L×p ⊆ IE .
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Solution: torsors under norm-one tori + class field theory

Existence of int. pts. of X (main result)

Theorem 2.1 ([Lv, 2020], func. field analog to [Lv et al., 2018])

Notations above, we have

(a) The open subgp. E×Ξ+
P∞

is of finite index in IE .

(b) Let K+
P∞

be the class field corresp. to E×Ξ+
P∞

(called the

narrow ring class field) and ψK+
P∞/E

: IE → Gal(K+
P∞

/E ) the

Artin map. Then X(oF ) 6= ∅ if and only if

there exists a local solution
∏

p(xp, yp) ∈
∏

p X(oFp ) (local condition) s.t.

ψK+
P∞

/E (f̃E (
∏

p(xp, yp))) = 1 (Artin condition).

Calculate to obtain Examples 1.1 and 1.3.
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Solution: torsors under norm-one tori + class field theory

Ideas of the proof

Replace L by oE  Ξ+
P∞

by Ξ̃+
P∞

= E+
P∞
×
∏

P 6=P∞
o×EP

⇒ E×Ξ̃+
P∞

/E×Ξ+
P∞

is finite.

But IE/E×Ξ̃+
P∞
∼= Cl+(oE ) is the narrow class gp., which is finite

[Goss, 1996] ⇒ IE/E×Ξ+
P∞

is finite (shows (a)).

Replace E+
P∞

by E×P∞  Ξ̃+
P∞

by ΞP∞ = E×P∞ ×
∏

P 6=P∞
o×EP

.
Call the corresp. KP∞ Hilbert class field.

The int. model T = Spec(oF [x , y ]/(x2 + dy2 − 1)) of T is so that
T(oFp

) acts stably on X(oFp
) for all p.

Use [Wei and Xu, 2012] and exploit the properties of sgn and the
def. of E+

P∞
(shows (b)).
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Application: primes of the form x2 + Dy2 in Fq [t]

Outline

1 Problem: is ax2 + bxy + cy2 + g = 0 solvable over Fq[t] ?

2 Solution: torsors under norm-one tori + class field theory

3 Application: primes of the form x2 + Dy2 in Fq[t]
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Application: primes of the form x2 + Dy2 in Fq [t]

Primes of the form x2 + Dy 2 in k[t]

Let D ∈ k[t] be sqr. free with positive deg., l - D irr., and
consider l = x2 + Dy2 over k[t].

Suppose that degD is odd or lc(−D) 6∈ k×2, which is to say
E = F (

√
−D)/F is imaginary [Rosen, 2013].

Then a necessary cond. for int. solvability is

deg l is even if degD is,

which we will always assume.

Let d∞ be the relative deg. of P∞ | p∞, deg∗ l = deg l
d∞
∈ Z>0

and choose sgn w.r.t the uniformizer tg/
√
−D (g the genus

of E ).
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Application: primes of the form x2 + Dy2 in Fq [t]

Extending a result of Maciak

Corollary ([Lv, 2020], extends [Maciak, 2011])

Notations and assumptions above, we have

(a) if sgn(l)(−1)deg∗ l ∈ k×2, then l = x2 + Dy2 is solvable over
k[t] if and only if(

l
r

)
= 1 for each monic irr. factor r | D and

l splits completely in K+
P∞

;

(b) if sgn(l)(−1)deg∗ l 6∈ k×2, then l = x2 + Dy2 is solvable over
k[t] if and only if(

l
r

)
= 1 for each monic irr. factor r | D,

l splits completely in KP∞ and

the relative deg. of l in K+
P∞

is 2.

To show it, use the Thm. 2.1 and calculate the Artin cond.
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Application: primes of the form x2 + Dy2 in Fq [t]

Outline revisited

Thanks for your attention.

1 Problem: is ax2 + bxy + cy2 + g = 0 solvable over Fq[t] ?

2 Solution: torsors under norm-one tori + class field theory

3 Application: primes of the form x2 + Dy2 in Fq[t]
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