Quadratic diophantine equations over function fields

Chang Lv

State Key Laboratory of Information Security (SKLOIS), Institute of Information Engineering (IIE), Chinese Academy of Sciences (CAS)

May 18, 2021

C. Lv Quad. eqs. over func. fields

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

Outline

1 Problem: is $ax^2 + bxy + cy^2 + g = 0$ solvable over $\mathbb{F}_q[t]$?

2 Solution: torsors under norm-one tori + class field theory

3 Application: primes of the form $x^2 + Dy^2$ in $\mathbb{F}_q[t]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Binary quad. forms over $\mathbb{F}_q[t]$

• Let $k = \mathbb{F}_q$, F = k(t) rational func. field, $\mathfrak{o}_F = k[t]$ the poly. ring.

■ Fix a, b, c and d in o_F, and consider the diophantine eq. def. by the bin. quad. form

$$ax^2 + bxy + cy^2 + g = 0.$$

Problem: when does it so able over o_F ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Binary quad. forms over $\mathbb{F}_q[t]$

- Let $k = \mathbb{F}_q$, F = k(t) rational func. field, $\mathfrak{o}_F = k[t]$ the poly. ring.
- Fix a, b, c and d in o_F, and consider the diophantine eq. def. by the bin. quad. form

$$ax^2 + bxy + cy^2 + g = 0.$$

Problem: when does it so able over o_F ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

Binary quad. forms over $\mathbb{F}_q[t]$

- Let $k = \mathbb{F}_q$, F = k(t) rational func. field, $\mathfrak{o}_F = k[t]$ the poly. ring.
- Fix a, b, c and d in o_F, and consider the diophantine eq. def. by the bin. quad. form

$$ax^2 + bxy + cy^2 + g = 0.$$

Problem: when does it so able over o_F ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の ()

An example

Example 1.1

• Consider the eq. over $k[t] = \mathbb{F}_3[t]$

$$-x^{2} + txy - (t^{3} - t^{2} + 1)y^{2} + g = 0.$$
 (1.2)

Write $g = u \times (t-1)^{s_1} \times (t^2 - t - 1)^{s_2} \times \prod_{j=1}^r p_j^{m_j}$, where $u \in k^{\times}$, p_r distinct monic irr. poly. in k[t].

Then (1.2) is solvable over k[t] if and only if

(1)
$$\left(\frac{g \times p^{-v_p(g)}}{p}\right) = (-1)^{v_p(g)}$$
, for $p = t - 1$ or $t^2 - t - 1$,
(2) $\left(\frac{-(t-1)(t^2 - t - 1)}{p}\right) = 1$, for $p \nmid (t - 1)(t^2 - t - 1)$, $v_p(g)$ odd.

<ロ> (四) (四) (三) (三) (三) (三)

An example

Example 1.1

• Consider the eq. over $k[t] = \mathbb{F}_3[t]$

$$-x^{2} + txy - (t^{3} - t^{2} + 1)y^{2} + g = 0.$$
 (1.2)

Write $g = u \times (t-1)^{s_1} \times (t^2 - t - 1)^{s_2} \times \prod_{j=1}^r p_j^{m_j}$, where $u \in k^{\times}$, p_r distinct monic irr. poly. in k[t].

Then (1.2) is solvable over k[t] if and only if

(1)
$$\left(\frac{g \times p^{-v_p(g)}}{p}\right) = (-1)^{v_p(g)}$$
, for $p = t - 1$ or $t^2 - t - 1$,
(2) $\left(\frac{-(t-1)(t^2 - t - 1)}{p}\right) = 1$, for $p \nmid (t - 1)(t^2 - t - 1)$, $v_p(g)$ odd.

An example

Example 1.1

• Consider the eq. over $k[t] = \mathbb{F}_3[t]$

$$-x^{2} + txy - (t^{3} - t^{2} + 1)y^{2} + g = 0.$$
 (1.2)

Write $g = u \times (t-1)^{s_1} \times (t^2 - t - 1)^{s_2} \times \prod_{j=1}^r p_j^{m_j}$, where $u \in k^{\times}$, p_r distinct monic irr. poly. in k[t].

■ Then (1.2) is solvable over *k*[*t*] if and only if

(1)
$$\left(\frac{g \times p^{-v_p(g)}}{p}\right) = (-1)^{v_p(g)}$$
, for $p = t - 1$ or $t^2 - t - 1$,
(2) $\left(\frac{-(t-1)(t^2 - t - 1)}{p}\right) = 1$, for $p \nmid (t - 1)(t^2 - t - 1)$, $v_p(g)$ odd.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Another example

Example 1.3

• The eq. over $k[t] = \mathbb{F}_3[t]$

$$(t-1)x^{2} + (t^{2} + t - 1)y^{2} + g = 0.$$
 (1.4)

Write $q_1 = t - 1$, $q_2 = t^2 + t - 1$ and $-d = -q_1q_2$ and define

$$\theta(X) = X^4 - (t^2 - t)X^2 - t^3 + 1 \in k[t][X]$$
(generates certain Galois extension),

 $D_1 = \{p \mid \left(\frac{-d}{p}\right) = 1, \theta(X) \mod p \text{ factors into two irr. polys.}\},\$ $D_2 = \{p \mid \left(\frac{-d}{p}\right) = 1, \theta(X) \mod p \text{ is irr.}\}$ (reflex the splittings of places)

Another example

Example 1.3

• The eq. over $k[t] = \mathbb{F}_3[t]$ $(t-1)x^{2} + (t^{2} + t - 1)y^{2} + g = 0.$ (1.4)Write $q_1 = t - 1$, $q_2 = t^2 + t - 1$ and $-d = -q_1q_2$ and define $\theta(X) = X^4 - (t^2 - t)X^2 - t^3 + 1 \in k[t][X]$ (generates certain Galois extension),

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Another example

Example 1.3

• The eq. over $k[t] = \mathbb{F}_3[t]$ $(t-1)x^{2} + (t^{2} + t - 1)y^{2} + g = 0.$ (1.4)Write $a_1 = t - 1$, $a_2 = t^2 + t - 1$ and $-d = -q_1q_2$ and define $\theta(X) = X^4 - (t^2 - t)X^2 - t^3 + 1 \in k[t][X]$ (generates certain Galois extension), $D_1 = \{p \mid \left(\frac{-d}{p}\right) = 1, \theta(X) \mod p \text{ factors into two irr. polys.}\},\$ $D_2 = \{p \mid \left(\frac{-d}{p}\right) = 1, \theta(X) \mod p \text{ is irr.}\}$

(reflex the splittings of places)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Another example (count.)

Example (1.3, count.)

Then (1.4) is solvable over k[t] if and only if

 (1) (g×p^{-vp(g)}/p) = (-1)^{deg(p)}, for q₁ or q₂,
 (2) (-d/p) = 1, for p ∤ d with odd v_p(g),
 (3) either
 D₂ = Ø and ∑_{p∈{q1,q2}∪D1} v_p(g) ≡ 1 (mod 2), or
 D₂ ≠ Ø and ∑_{p∈D2} v_p(g) ≡ 0 (mod 2).

■ The conditions (1) and (2) are local,

■ and (3) is called the Artin condition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへ⊙

Another example (count.)

Example (1.3, count.)

• Then (1.4) is solvable over k[t] if and only if

(1)
$$\left(\frac{g \times p^{-v_p(g)}}{p}\right) = (-1)^{\deg(p)}$$
, for q_1 or q_2 ,
(2) $\left(\frac{-d}{p}\right) = 1$, for $p \nmid d$ with odd $v_p(g)$,
(3) either
• $D_2 = \emptyset$ and $\sum_{p \in \{q_1, q_2\} \cup D_1} v_p(g) \equiv 1 \pmod{2}$, or
• $D_2 \neq \emptyset$ and $\sum_{p \in D_2} v_p(g) \equiv 0 \pmod{2}$.

■ The conditions (1) and (2) are local,

■ and (3) is called the Artin condition.

<ロ> (四) (四) (三) (三) (三) (三)

Another example (count.)

Example (1.3, count.)

• Then (1.4) is solvable over k[t] if and only if

(1)
$$\left(\frac{g \times p^{-v_p(g)}}{p}\right) = (-1)^{\deg(p)}$$
, for q_1 or q_2 ,
(2) $\left(\frac{-d}{p}\right) = 1$, for $p \nmid d$ with odd $v_p(g)$,
(3) either
• $D_2 = \emptyset$ and $\sum_{p \in \{q_1, q_2\} \cup D_1} v_p(g) \equiv 1 \pmod{2}$, or
• $D_2 \neq \emptyset$ and $\sum_{p \in D_2} v_p(g) \equiv 0 \pmod{2}$.

■ The conditions (1) and (2) are local,

■ and (3) is called the Artin condition.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Another example (count.)

Example (1.3, count.)

• Then (1.4) is solvable over k[t] if and only if

(1)
$$\left(\frac{g \times p^{-v_p(g)}}{p}\right) = (-1)^{\deg(p)}$$
, for q_1 or q_2 ,
(2) $\left(\frac{-d}{p}\right) = 1$, for $p \nmid d$ with odd $v_p(g)$,
(3) either
• $D_2 = \emptyset$ and $\sum_{p \in \{q_1, q_2\} \cup D_1} v_p(g) \equiv 1 \pmod{2}$, or
• $D_2 \neq \emptyset$ and $\sum_{p \in D_2} v_p(g) \equiv 0 \pmod{2}$.

- The conditions (1) and (2) are local,
- and (3) is called the Artin condition.

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - つくで

Outline

1 Problem: is $ax^2 + bxy + cy^2 + g = 0$ solvable over $\mathbb{F}_q[t]$?

2 Solution: torsors under norm-one tori + class field theory

3 Application: primes of the form $x^2 + Dy^2$ in $\mathbb{F}_q[t]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Restrictions:

- k with char. not 2, $-d = (b/2)^2 ac$ not sqare,
- the quad. ext. $E = F(\sqrt{-d})/F$ is imaginary, i.e., there is a unique place lying over 1/t.
- The question is to ask the existence of integral points of the affine scheme X = Spec(o_F[x, y]/(a(ax² + bxy + cy² + g))) over o_F.
 - General tool: (int.) obstructions to local-global principal.
 - Observation: $\tilde{x} = ax + \frac{b}{2}y$, $\tilde{y} = y$, n = -ag, $\mathbf{X} : \tilde{x}^2 + d\tilde{y}^2 = n$, whose generic fiber admits the structure of a torsor of a torus.
 - Bonus: we can make use of class field theory.

◆□ → ◆□ → ◆三 → ◆三 → ○三

Restrictions:

- k with char. not 2, $-d = (b/2)^2 ac$ not sqare,
- the quad. ext. $E = F(\sqrt{-d})/F$ is imaginary, i.e., there is a unique place lying over 1/t.
- The question is to ask the existence of integral points of the affine scheme X = Spec(o_F[x, y]/(a(ax² + bxy + cy² + g))) over o_F.
 - General tool: (int.) obstructions to local-global principal.
 - Observation: $\tilde{x} = ax + \frac{b}{2}y$, $\tilde{y} = y$, n = -ag, $\mathbf{X} : \tilde{x}^2 + d\tilde{y}^2 = n$, whose generic fiber admits the structure of a torsor of a torus.
 - Bonus: we can make use of class field theory.

Restrictions:

- k with char. not 2, $-d = (b/2)^2 ac$ not sqare,
- the quad. ext. $E = F(\sqrt{-d})/F$ is imaginary, i.e., there is a unique place lying over 1/t.
- The question is to ask the existence of integral points of the affine scheme X = Spec(o_F[x, y]/(a(ax² + bxy + cy² + g))) over o_F.
 - General tool: (int.) obstructions to local-global principal.
 - Observation: $\tilde{x} = ax + \frac{b}{2}y$, $\tilde{y} = y$, n = -ag, $\mathbf{X} : \tilde{x}^2 + d\tilde{y}^2 = n$, whose generic fiber admits the structure of a torsor of a torus.
 - Bonus: we can make use of class field theory.

Restrictions:

- k with char. not 2, $-d = (b/2)^2 ac$ not sqare,
- the quad. ext. $E = F(\sqrt{-d})/F$ is imaginary, i.e., there is a unique place lying over 1/t.
- The question is to ask the existence of integral points of the affine scheme X = Spec(o_F[x, y]/(a(ax² + bxy + cy² + g))) over o_F.
 - General tool: (int.) obstructions to local-global principal.
 - Observation: $\tilde{x} = ax + \frac{b}{2}y$, $\tilde{y} = y$, n = -ag, $\mathbf{X} : \tilde{x}^2 + d\tilde{y}^2 = n$, whose generic fiber admits the structure of a torsor of a torus.

Bonus: we can make use of class field theory.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Restrictions:

- k with char. not 2, $-d = (b/2)^2 ac$ not sqare,
- the quad. ext. $E = F(\sqrt{-d})/F$ is imaginary, i.e., there is a unique place lying over 1/t.
- The question is to ask the existence of integral points of the affine scheme X = Spec(o_F[x, y]/(a(ax² + bxy + cy² + g))) over o_F.
 - General tool: (int.) obstructions to local-global principal.
 - Observation: $\tilde{x} = ax + \frac{b}{2}y$, $\tilde{y} = y$, n = -ag, $\mathbf{X} : \tilde{x}^2 + d\tilde{y}^2 = n$, whose generic fiber admits the structure of a torsor of a torus.
 - Bonus: we can make use of class field theory.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• Let $T = \ker(R_{E/F}(\mathbb{G}_{m,E}) \xrightarrow{N_{E/F}} \mathbb{G}_{m,F})$ (called norm-one torus), and $X_F = X \times_{\mathfrak{o}_F} F$ the generic fiber.

- Intuition: if N(t) = 1 and N(x) = n then N(tx) = n. $\rightarrow T \times X_F \rightarrow X_F$, making X_F a *T*-torsor.
- Fix a rat. pt. P ∈ X_F(F) to obtain φ_P : X_F → T, whose restriction to X(o_{F_p}) (int. local pts.) has image in I_E (idéle group).
- The composition $\tilde{f}_E : \prod_{\mathfrak{p}} X(\mathfrak{o}_{F_{\mathfrak{p}}}) \to \mathbb{I}_E \xrightarrow{\times P} \mathbb{I}_E$ whose \mathfrak{p} -component is

$$\tilde{f}_{E}[(x_{\mathfrak{p}}, y_{\mathfrak{p}})] = \begin{cases} (\tilde{x}_{\mathfrak{p}} + \sqrt{-d}\tilde{y}_{\mathfrak{p}}, \tilde{x}_{\mathfrak{p}} - \sqrt{-d}\tilde{y}_{\mathfrak{p}}) \in E_{\mathfrak{Y}} & \text{, if } \mathfrak{p} = \mathfrak{P}\tilde{\mathfrak{P}} \text{ splits in } E/F \\ \tilde{x}_{\mathfrak{p}} + \sqrt{-d}\tilde{y}_{\mathfrak{p}} \in E_{\mathfrak{Y}} & \text{, otherwise,} \end{cases}$$

where \mathfrak{P} and $\overline{\mathfrak{P}}$ (resp. \mathfrak{P}) are places of E above \mathfrak{p} and $\tilde{x}_{\mathfrak{p}} = ax_{\mathfrak{p}} + \frac{b}{2}y_{\mathfrak{p}}$, $\tilde{y}_{\mathfrak{p}} = y_{\mathfrak{p}}$.

C. Lv Quad. eqs. over func. fields

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

-

• Let $T = \ker(R_{E/F}(\mathbb{G}_{m,E}) \xrightarrow{N_{E/F}} \mathbb{G}_{m,F})$ (called norm-one torus), and $X_F = X \times_{\mathfrak{o}_F} F$ the generic fiber.

- Intuition: if N(t) = 1 and N(x) = n then N(tx) = n. $\rightsquigarrow T \times X_F \to X_F$, making X_F a T-torsor.
- Fix a rat. pt. P ∈ X_F(F) to obtain φ_P : X_F → T, whose restriction to X(o_{F_p}) (int. local pts.) has image in I_E (idéle group).
- The composition $\tilde{f}_E : \prod_{\mathfrak{p}} \mathsf{X}(\mathfrak{o}_{F_{\mathfrak{p}}}) \to \mathbb{I}_E \xrightarrow{\times P} \mathbb{I}_E$ whose \mathfrak{p} -component is

$$\tilde{f}_{E}[(x_{\mathfrak{p}}, y_{\mathfrak{p}})] = \begin{cases} (\tilde{x}_{\mathfrak{p}} + \sqrt{-d}\tilde{y}_{\mathfrak{p}}, \tilde{x}_{\mathfrak{p}} - \sqrt{-d}\tilde{y}_{\mathfrak{p}}) \in E_{\mathfrak{P}3} & \text{, if } \mathfrak{p} = \mathfrak{P}\tilde{\mathfrak{P}} \text{ splits in } E/F \\ \tilde{x}_{\mathfrak{p}} + \sqrt{-d}\tilde{y}_{\mathfrak{p}} \in E_{\mathfrak{P}3} & \text{, otherwise,} \end{cases}$$

where \mathfrak{P} and $\overline{\mathfrak{P}}$ (resp. \mathfrak{P}) are places of E above \mathfrak{p} and $\tilde{x}_{\mathfrak{p}} = ax_{\mathfrak{p}} + \frac{b}{2}y_{\mathfrak{p}}$, $\tilde{y}_{\mathfrak{p}} = y_{\mathfrak{p}}$.

C. Lv Quad. eqs. over func. fields

・ロト ・ 四ト ・ ヨト ・ ヨト

-

• Let $T = \ker(R_{E/F}(\mathbb{G}_{m,E}) \xrightarrow{N_{E/F}} \mathbb{G}_{m,F})$ (called norm-one torus), and $X_F = X \times_{\mathfrak{o}_F} F$ the generic fiber.

- Intuition: if N(t) = 1 and N(x) = n then N(tx) = n. $\rightsquigarrow T \times X_F \to X_F$, making X_F a T-torsor.
- Fix a rat. pt. P ∈ X_F(F) to obtain φ_P : X_F → T, whose restriction to X(𝔅_{F_ν}) (int. local pts.) has image in I_E (idéle group).

• The composition $\tilde{f}_E : \prod_p X(\mathfrak{o}_{F_p}) \to \mathbb{I}_E \xrightarrow{\times P} \mathbb{I}_E$ whose p-component is

$$\tilde{f}_{E}[(\mathbf{x}_{p}\,,\,\mathbf{y}_{p}\,)] = \begin{cases} (\tilde{\mathbf{x}}_{p}\,+\,\sqrt{-d}\tilde{\mathbf{y}}_{p}\,,\,\tilde{\mathbf{x}}_{p}\,-\,\sqrt{-d}\tilde{\mathbf{y}}_{p}\,) \in E_{\mathfrak{Y}} \times E_{\mathfrak{Y}} &, \text{ if } \mathfrak{p} = \mathfrak{P}\mathfrak{P}\mathfrak{P} \text{ splits in } E/F \\ \tilde{\mathbf{x}}_{p}\,+\,\sqrt{-d}\tilde{\mathbf{y}}_{p}\,\in\,E_{\mathfrak{Y}} &, \text{ otherwise,} \end{cases}$$

where \mathfrak{P} and $\overline{\mathfrak{P}}$ (resp. \mathfrak{P}) are places of E above \mathfrak{p} and $\widetilde{x}_{\mathfrak{p}} = ax_{\mathfrak{p}} + \frac{b}{2}y_{\mathfrak{p}}$, $\widetilde{y}_{\mathfrak{p}} = y_{\mathfrak{p}}$.

• Let $T = \ker(R_{E/F}(\mathbb{G}_{m,E}) \xrightarrow{N_{E/F}} \mathbb{G}_{m,F})$ (called norm-one torus), and $X_F = X \times_{\mathfrak{o}_F} F$ the generic fiber.

- Intuition: if N(t) = 1 and N(x) = n then N(tx) = n. $\rightarrow T \times X_F \rightarrow X_F$, making X_F a *T*-torsor.
- Fix a rat. pt. P ∈ X_F(F) to obtain φ_P : X_F → T, whose restriction to X(𝔅_{F_ν}) (int. local pts.) has image in I_E (idéle group).
- The composition $\tilde{f}_E : \prod_{\mathfrak{p}} \mathbf{X}(\mathfrak{o}_{F_{\mathfrak{p}}}) \to \mathbb{I}_E \stackrel{\times P}{\to} \mathbb{I}_E$ whose \mathfrak{p} -component is

$$\tilde{f}_{E}[(\mathbf{x}_{p}, \mathbf{y}_{p})] = \begin{cases} (\tilde{\mathbf{x}}_{p} + \sqrt{-d}\tilde{\mathbf{y}}_{p}, \tilde{\mathbf{x}}_{p} - \sqrt{-d}\tilde{\mathbf{y}}_{p}) \in E_{\mathfrak{Y}} \times E_{\mathfrak{Y}} & \text{, if } \mathfrak{p} = \mathfrak{P}\mathfrak{\tilde{\mathcal{P}}} \ \mathfrak{P} \text{ plits in } E/F \\ \tilde{\mathbf{x}}_{p} + \sqrt{-d}\tilde{\mathbf{y}}_{p} \in E_{\mathfrak{Y}} & \text{, otherwise,} \end{cases}$$

where \mathfrak{P} and $\overline{\mathfrak{P}}$ (resp. \mathfrak{P}) are places of E above \mathfrak{p} and $\tilde{x}_{\mathfrak{p}} = ax_{\mathfrak{p}} + \frac{b}{2}y_{\mathfrak{p}}$, $\tilde{y}_{\mathfrak{p}} = y_{\mathfrak{p}}$.

C. Lv Quad. eqs. over func. fields

- Let $L = \mathfrak{o}_F + \mathfrak{o}_F \sqrt{-d} \subseteq \mathfrak{o}_E$ an order, with completion $L_\mathfrak{p} = L \otimes_{\mathfrak{o}_F} \mathfrak{o}_{F_\mathfrak{p}}$ at \mathfrak{p} .
- Let p_∞ = 1/t be the place of k(t) at ∞ and 𝔅_∞ the unique place in E above p_∞.
- Fix a sign function sgn : $E_{\mathfrak{P}_{\infty}} \to \mathfrak{o}_{E_{\mathfrak{P}_{\infty}}}/\mathfrak{P}_{\infty}$ (taking the first non-zero coeff. of the Laurent expansion), and take all the positive elements $E_{\mathfrak{P}_{\infty}}^+ = \{\alpha \in E_{\mathfrak{P}_{\infty}}^{\times} \mid \operatorname{sgn}(\alpha) = 1\} \subseteq E_{\mathfrak{P}_{\infty}}^{\times}$.
- \rightsquigarrow an open subgp. $\Xi_{\mathfrak{P}_{\infty}}^+ = E_{\mathfrak{P}_{\infty}}^+ \times \prod_{\mathfrak{p} \neq \mathfrak{p}_{\infty}} L_{\mathfrak{p}}^{\times} \subseteq \mathbb{I}_E.$

◆□ > ◆母 > ◆ヨ > ◆ヨ > ● ● ●

- Let $L = \mathfrak{o}_F + \mathfrak{o}_F \sqrt{-d} \subseteq \mathfrak{o}_E$ an order, with completion $L_\mathfrak{p} = L \otimes_{\mathfrak{o}_F} \mathfrak{o}_{F_\mathfrak{p}}$ at \mathfrak{p} .
- Let p_∞ = 1/t be the place of k(t) at ∞ and 𝔅_∞ the unique place in E above p_∞.
- Fix a sign function sgn : $E_{\mathfrak{P}_{\infty}} \to \mathfrak{o}_{E_{\mathfrak{P}_{\infty}}}/\mathfrak{P}_{\infty}$ (taking the first non-zero coeff. of the Laurent expansion), and take all the positive elements $E_{\mathfrak{P}_{\infty}}^+ = \{\alpha \in E_{\mathfrak{P}_{\infty}}^{\times} \mid \operatorname{sgn}(\alpha) = 1\} \subseteq E_{\mathfrak{P}_{\infty}}^{\times}$.
- \rightsquigarrow an open subgp. $\Xi_{\mathfrak{P}_{\infty}}^+ = E_{\mathfrak{P}_{\infty}}^+ \times \prod_{\mathfrak{p} \neq \mathfrak{p}_{\infty}} L_{\mathfrak{p}}^{\times} \subseteq \mathbb{I}_E.$

◆□ > ◆母 > ◆ヨ > ◆ヨ > ● ● ●

- Let $L = \mathfrak{o}_F + \mathfrak{o}_F \sqrt{-d} \subseteq \mathfrak{o}_E$ an order, with completion $L_\mathfrak{p} = L \otimes_{\mathfrak{o}_F} \mathfrak{o}_{F_\mathfrak{p}}$ at \mathfrak{p} .
- Let p_∞ = 1/t be the place of k(t) at ∞ and 𝔅_∞ the unique place in E above p_∞.
- Fix a sign function sgn : $E_{\mathfrak{P}_{\infty}} \to \mathfrak{o}_{E_{\mathfrak{P}_{\infty}}}/\mathfrak{P}_{\infty}$ (taking the first non-zero coeff. of the Laurent expansion), and take all the positive elements $E_{\mathfrak{P}_{\infty}}^+ = \{ \alpha \in E_{\mathfrak{P}_{\infty}}^{\times} \mid \operatorname{sgn}(\alpha) = 1 \} \subseteq E_{\mathfrak{P}_{\infty}}^{\times}.$

• \rightsquigarrow an open subgp. $\Xi_{\mathfrak{P}_{\infty}}^+ = E_{\mathfrak{P}_{\infty}}^+ \times \prod_{\mathfrak{p} \neq \mathfrak{p}_{\infty}} L_{\mathfrak{p}}^{\times} \subseteq \mathbb{I}_E.$

- Let $L = \mathfrak{o}_F + \mathfrak{o}_F \sqrt{-d} \subseteq \mathfrak{o}_E$ an order, with completion $L_\mathfrak{p} = L \otimes_{\mathfrak{o}_F} \mathfrak{o}_{F_\mathfrak{p}}$ at \mathfrak{p} .
- Let p_∞ = 1/t be the place of k(t) at ∞ and 𝔅_∞ the unique place in E above p_∞.
- Fix a sign function sgn : $E_{\mathfrak{P}_{\infty}} \to \mathfrak{o}_{E_{\mathfrak{P}_{\infty}}}/\mathfrak{P}_{\infty}$ (taking the first non-zero coeff. of the Laurent expansion), and take all the positive elements $E_{\mathfrak{P}_{\infty}}^+ = \{ \alpha \in E_{\mathfrak{P}_{\infty}}^{\times} \mid \operatorname{sgn}(\alpha) = 1 \} \subseteq E_{\mathfrak{P}_{\infty}}^{\times}.$
- \rightsquigarrow an open subgp. $\Xi_{\mathfrak{P}_{\infty}}^+ = E_{\mathfrak{P}_{\infty}}^+ \times \prod_{\mathfrak{p} \neq \mathfrak{p}_{\infty}} L_{\mathfrak{p}}^{\times} \subseteq \mathbb{I}_E.$

Theorem 2.1 ([Lv, 2020], func. field analog to [Lv et al., 2018])

Notations above, we have

(a) The open subgp. $E^{\times}\Xi^+_{\mathfrak{P}_{\infty}}$ is of finite index in \mathbb{I}_{E} .

(b) Let K⁺_{𝔅∞} be the class field corresp. to E[×]Ξ⁺_{𝔅∞} (called the narrow ring class field) and ψ_{K⁺_{𝔅∞}/E} : I_E → Gal(K⁺_{𝔅∞}/E) the Artin map. Then X(𝔅) ≠ Ø if and only if

• there exists a local solution $\prod_{p} (x_{p}, y_{p}) \in \prod_{p} X(\mathfrak{o}_{F_{p}})$ (local condition) s.t.

• $\psi_{K^+_{\mathfrak{M}_{\infty}}/E}(\tilde{f}_E(\prod_{\mathfrak{p}}(x_{\mathfrak{p}}, y_{\mathfrak{p}}))) = 1$ (Artin condition).

Calculate to obtain Examples 1.1 and 1.3.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへで

Theorem 2.1 ([Lv, 2020], func. field analog to [Lv et al., 2018])

Notations above, we have

(a) The open subgp. $E^{\times}\Xi^+_{\mathfrak{P}_{\infty}}$ is of finite index in \mathbb{I}_{E} .

(b) Let $\mathcal{K}_{\mathfrak{P}_{\infty}}^+$ be the class field corresp. to $E^{\times} \Xi_{\mathfrak{P}_{\infty}}^+$ (called the narrow ring class field) and $\psi_{\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E} : \mathbb{I}_E \to \operatorname{Gal}(\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E)$ the Artin map. Then $\mathbf{X}(\mathfrak{o}_F) \neq \emptyset$ if and only if

• there exists a local solution $\prod_{p} (x_{p}, y_{p}) \in \prod_{p} X(o_{F_{p}})$ (local condition) s.t.

• $\psi_{K^+_{\mathfrak{M}_{\infty}}/E}(\tilde{f}_E(\prod_{\mathfrak{p}}(x_{\mathfrak{p}}, y_{\mathfrak{p}}))) = 1$ (Artin condition).

• Calculate to obtain Examples 1.1 and 1.3.

Theorem 2.1 ([Lv, 2020], func. field analog to [Lv et al., 2018])

Notations above, we have

(a) The open subgp. $E^{\times}\Xi^+_{\mathfrak{P}_{\infty}}$ is of finite index in \mathbb{I}_{E} .

(b) Let $\mathcal{K}_{\mathfrak{P}_{\infty}}^+$ be the class field corresp. to $E^{\times} \Xi_{\mathfrak{P}_{\infty}}^+$ (called the narrow ring class field) and $\psi_{\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E} : \mathbb{I}_E \to \operatorname{Gal}(\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E)$ the Artin map. Then $\mathbf{X}(\mathfrak{o}_F) \neq \emptyset$ if and only if

• there exists a local solution $\prod_{p} (x_{p}, y_{p}) \in \prod_{p} X(\mathfrak{o}_{F_{p}})$ (local condition) s.t.

• $\psi_{K^+_{\mathfrak{B}_{\infty}}/E}(\tilde{f}_E(\prod_{\mathfrak{p}}(x_{\mathfrak{p}}, y_{\mathfrak{p}}))) = 1$ (Artin condition).

Calculate to obtain Examples 1.1 and 1.3.

Theorem 2.1 ([Lv, 2020], func. field analog to [Lv et al., 2018])

Notations above, we have

(a) The open subgp. $E^{\times}\Xi^+_{\mathfrak{P}_{\infty}}$ is of finite index in \mathbb{I}_{E} .

(b) Let $\mathcal{K}_{\mathfrak{P}_{\infty}}^+$ be the class field corresp. to $E^{\times} \Xi_{\mathfrak{P}_{\infty}}^+$ (called the narrow ring class field) and $\psi_{\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E} : \mathbb{I}_E \to \operatorname{Gal}(\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E)$ the Artin map. Then $\mathbf{X}(\mathfrak{o}_F) \neq \emptyset$ if and only if

• there exists a local solution $\prod_{p} (x_{p}, y_{p}) \in \prod_{p} X(\mathfrak{o}_{F_{p}})$ (local condition) s.t.

•
$$\psi_{K^+_{\mathfrak{P}_{\infty}}/E}(\tilde{f}_E(\prod_{\mathfrak{p}}(x_{\mathfrak{p}}, y_{\mathfrak{p}}))) = 1$$
 (Artin condition).

• Calculate to obtain Examples 1.1 and 1.3.

Theorem 2.1 ([Lv, 2020], func. field analog to [Lv et al., 2018])

Notations above, we have

(a) The open subgp. $E^{\times}\Xi^+_{\mathfrak{P}_{\infty}}$ is of finite index in \mathbb{I}_{E} .

(b) Let $\mathcal{K}_{\mathfrak{P}_{\infty}}^+$ be the class field corresp. to $E^{\times} \Xi_{\mathfrak{P}_{\infty}}^+$ (called the narrow ring class field) and $\psi_{\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E} : \mathbb{I}_E \to \operatorname{Gal}(\mathcal{K}_{\mathfrak{P}_{\infty}}^+/E)$ the Artin map. Then $\mathbf{X}(\mathfrak{o}_F) \neq \emptyset$ if and only if

• there exists a local solution $\prod_{p} (x_{p}, y_{p}) \in \prod_{p} X(\mathfrak{o}_{F_{p}})$ (local condition) s.t.

•
$$\psi_{K^+_{\mathfrak{P}_{\infty}}/E}(\tilde{f}_E(\prod_{\mathfrak{p}}(x_{\mathfrak{p}}, y_{\mathfrak{p}}))) = 1$$
 (Artin condition).

• Calculate to obtain Examples 1.1 and 1.3.

- Replace *L* by $\mathfrak{o}_{\mathcal{E}} \rightsquigarrow \Xi^+_{\mathfrak{P}_{\infty}}$ by $\tilde{\Xi}^+_{\mathfrak{P}_{\infty}} = \mathcal{E}^+_{\mathfrak{P}_{\infty}} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} \mathfrak{o}_{\mathcal{E}_{\mathfrak{P}}}^{\times}$ $\Rightarrow \mathcal{E}^{\times} \tilde{\Xi}^+_{\mathfrak{P}_{\infty}} / \mathcal{E}^{\times} \Xi^+_{\mathfrak{P}_{\infty}}$ is finite.
- But $\mathbb{I}_E/E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_{\infty}} \cong Cl^+(\mathfrak{o}_E)$ is the narrow class gp., which is finite [Goss, 1996] $\Rightarrow \mathbb{I}_E/E^{\times} \Xi^+_{\mathfrak{P}_{\infty}}$ is finite (shows (a)).
- Replace $E_{\mathfrak{P}_{\infty}}^+$ by $E_{\mathfrak{P}_{\infty}}^{\times} \rightsquigarrow \tilde{\Xi}_{\mathfrak{P}_{\infty}}^+$ by $\Xi_{\mathfrak{P}_{\infty}} = E_{\mathfrak{P}_{\infty}}^{\times} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} \mathfrak{o}_{E_{\mathfrak{P}}}^{\times}$. Call the corresp. $K_{\mathfrak{P}_{\infty}}$ Hilbert class field.
- The int. model $\mathbf{T} = \operatorname{Spec}(\mathfrak{o}_F[x, y]/(x^2 + dy^2 1))$ of T is so that $\mathbf{T}(\mathfrak{o}_{F_p})$ acts stably on $\mathbf{X}(\mathfrak{o}_{F_p})$ for all \mathfrak{p} .
- Use [Wei and Xu, 2012] and exploit the properties of sgn and the def. of $E_{\mathfrak{P}_{\infty}}^+$ (shows (b)).

- Replace *L* by $\mathfrak{o}_E \rightsquigarrow \Xi^+_{\mathfrak{P}_\infty}$ by $\tilde{\Xi}^+_{\mathfrak{P}_\infty} = E^+_{\mathfrak{P}_\infty} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_\infty} \mathfrak{o}_{E_\mathfrak{P}}^\times$ $\Rightarrow E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_\infty} / E^{\times} \Xi^+_{\mathfrak{P}_\infty}$ is finite.
- But $\mathbb{I}_E/E^{\times} \stackrel{\simeq}{=} \stackrel{+}{\mathfrak{P}}_{\mathfrak{P}_{\infty}} \cong Cl^+(\mathfrak{o}_E)$ is the narrow class gp., which is finite [Goss, 1996] $\Rightarrow \mathbb{I}_E/E^{\times} \equiv_{\mathfrak{P}_{\infty}}^+$ is finite (shows (a)).
- Replace $E_{\mathfrak{P}_{\infty}}^+$ by $E_{\mathfrak{P}_{\infty}}^{\times} \rightsquigarrow \widetilde{\Xi}_{\mathfrak{P}_{\infty}}^+$ by $\Xi_{\mathfrak{P}_{\infty}} = E_{\mathfrak{P}_{\infty}}^{\times} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} \mathfrak{o}_{E_{\mathfrak{P}}}^{\times}$. Call the corresp. $K_{\mathfrak{P}_{\infty}}$ Hilbert class field.
- The int. model $\mathbf{T} = \operatorname{Spec}(\mathfrak{o}_F[x, y]/(x^2 + dy^2 1))$ of T is so that $\mathbf{T}(\mathfrak{o}_{F_p})$ acts stably on $\mathbf{X}(\mathfrak{o}_{F_p})$ for all \mathfrak{p} .
- Use [Wei and Xu, 2012] and exploit the properties of sgn and the def. of $E_{\mathfrak{P}_{\infty}}^+$ (shows (b)).

- Replace *L* by $\mathfrak{o}_E \rightsquigarrow \Xi^+_{\mathfrak{P}_\infty}$ by $\tilde{\Xi}^+_{\mathfrak{P}_\infty} = E^+_{\mathfrak{P}_\infty} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_\infty} \mathfrak{o}_{E_\mathfrak{P}}^\times$ $\Rightarrow E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_\infty} / E^{\times} \Xi^+_{\mathfrak{P}_\infty}$ is finite.
- But $\mathbb{I}_E/E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_{\infty}} \cong Cl^+(\mathfrak{o}_E)$ is the narrow class gp., which is finite [Goss, 1996] $\Rightarrow \mathbb{I}_E/E^{\times} \Xi^+_{\mathfrak{P}_{\infty}}$ is finite (shows (a)).
- Replace $E_{\mathfrak{P}_{\infty}}^+$ by $E_{\mathfrak{P}_{\infty}}^{\times} \rightsquigarrow \tilde{\Xi}_{\mathfrak{P}_{\infty}}^+$ by $\Xi_{\mathfrak{P}_{\infty}} = E_{\mathfrak{P}_{\infty}}^{\times} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} \mathfrak{o}_{E_{\mathfrak{P}}}^{\times}$. Call the corresp. $K_{\mathfrak{P}_{\infty}}$ Hilbert class field.
- The int. model $\mathbf{T} = \operatorname{Spec}(\mathfrak{o}_F[x, y]/(x^2 + dy^2 1))$ of T is so that $\mathbf{T}(\mathfrak{o}_{F_p})$ acts stably on $\mathbf{X}(\mathfrak{o}_{F_p})$ for all \mathfrak{p} .
- Use [Wei and Xu, 2012] and exploit the properties of sgn and the def. of $E_{\mathfrak{P}_{\infty}}^+$ (shows (b)).

- Replace *L* by $\mathfrak{o}_E \rightsquigarrow \Xi^+_{\mathfrak{P}_\infty}$ by $\tilde{\Xi}^+_{\mathfrak{P}_\infty} = E^+_{\mathfrak{P}_\infty} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_\infty} \mathfrak{o}_{E_\mathfrak{P}}^\times$ $\Rightarrow E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_\infty} / E^{\times} \Xi^+_{\mathfrak{P}_\infty}$ is finite.
- But $\mathbb{I}_E/E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_{\infty}} \cong Cl^+(\mathfrak{o}_E)$ is the narrow class gp., which is finite [Goss, 1996] $\Rightarrow \mathbb{I}_E/E^{\times} \Xi^+_{\mathfrak{P}_{\infty}}$ is finite (shows (a)).
- Replace $E_{\mathfrak{P}_{\infty}}^+$ by $E_{\mathfrak{P}_{\infty}}^{\times} \rightsquigarrow \tilde{\Xi}_{\mathfrak{P}_{\infty}}^+$ by $\Xi_{\mathfrak{P}_{\infty}} = E_{\mathfrak{P}_{\infty}}^{\times} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} \mathfrak{o}_{E_{\mathfrak{P}}}^{\times}$. Call the corresp. $K_{\mathfrak{P}_{\infty}}$ Hilbert class field.
- The int. model $\mathbf{T} = \operatorname{Spec}(\mathfrak{o}_F[x, y]/(x^2 + dy^2 1))$ of T is so that $\mathbf{T}(\mathfrak{o}_{F_p})$ acts stably on $\mathbf{X}(\mathfrak{o}_{F_p})$ for all \mathfrak{p} .
- Use [Wei and Xu, 2012] and exploit the properties of sgn and the def. of $E_{\mathfrak{P}_{\infty}}^+$ (shows (b)).

- Replace *L* by $\mathfrak{o}_E \rightsquigarrow \Xi^+_{\mathfrak{P}_\infty}$ by $\tilde{\Xi}^+_{\mathfrak{P}_\infty} = E^+_{\mathfrak{P}_\infty} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_\infty} \mathfrak{o}_{E_\mathfrak{P}}^\times$ $\Rightarrow E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_\infty} / E^{\times} \Xi^+_{\mathfrak{P}_\infty}$ is finite.
- But $\mathbb{I}_E/E^{\times} \tilde{\Xi}^+_{\mathfrak{P}_{\infty}} \cong Cl^+(\mathfrak{o}_E)$ is the narrow class gp., which is finite [Goss, 1996] $\Rightarrow \mathbb{I}_E/E^{\times} \Xi^+_{\mathfrak{P}_{\infty}}$ is finite (shows (a)).
- Replace $E_{\mathfrak{P}_{\infty}}^+$ by $E_{\mathfrak{P}_{\infty}}^{\times} \rightsquigarrow \tilde{\Xi}_{\mathfrak{P}_{\infty}}^+$ by $\Xi_{\mathfrak{P}_{\infty}} = E_{\mathfrak{P}_{\infty}}^{\times} \times \prod_{\mathfrak{P} \neq \mathfrak{P}_{\infty}} \mathfrak{o}_{E_{\mathfrak{P}}}^{\times}$. Call the corresp. $K_{\mathfrak{P}_{\infty}}$ Hilbert class field.
- The int. model $\mathbf{T} = \operatorname{Spec}(\mathfrak{o}_F[x, y]/(x^2 + dy^2 1))$ of T is so that $\mathbf{T}(\mathfrak{o}_{F_p})$ acts stably on $\mathbf{X}(\mathfrak{o}_{F_p})$ for all \mathfrak{p} .
- Use [Wei and Xu, 2012] and exploit the properties of sgn and the def. of $E_{\mathfrak{P}_{\infty}}^+$ (shows (b)).

Outline

1 Problem: is $ax^2 + bxy + cy^2 + g = 0$ solvable over $\mathbb{F}_q[t]$?

2 Solution: torsors under norm-one tori + class field theory

3 Application: primes of the form $x^2 + Dy^2$ in $\mathbb{F}_q[t]$

Primes of the form $x^2 + Dy^2$ in k[t]

- Let D ∈ k[t] be sqr. free with positive deg., I ∤ D irr., and consider I = x² + Dy² over k[t].
- Suppose that deg *D* is odd or $lc(-D) \notin k^{\times 2}$, which is to say $E = F(\sqrt{-D})/F$ is imaginary [Rosen, 2013].
- Then a necessary cond. for int. solvability is

deg l is even if deg D is,

which we will always assume.

Let d_{∞} be the relative deg. of $\mathfrak{P}_{\infty} \mid \mathfrak{p}_{\infty}, \deg^* l = \frac{\deg l}{d_{\infty}} \in \mathbb{Z}_{>0}$ and choose sgn w.r.t the uniformizer $t^g/\sqrt{-D}$ (g the genus of E).

Primes of the form $x^2 + Dy^2$ in k[t]

- Let D ∈ k[t] be sqr. free with positive deg., I ∤ D irr., and consider I = x² + Dy² over k[t].
- Suppose that deg *D* is odd or $lc(-D) \notin k^{\times 2}$, which is to say $E = F(\sqrt{-D})/F$ is imaginary [Rosen, 2013].
- Then a necessary cond. for int. solvability is

deg *I* is even if deg *D* is,

which we will always assume.

Let d_∞ be the relative deg. of 𝔅_∞ | 𝔅_∞, deg^{*} I = deg I/d_∞ ∈ ℤ_{>0} and choose sgn w.r.t the uniformizer t^g/√−D (g the genus of E).

Primes of the form $x^2 + Dy^2$ in k[t]

- Let D ∈ k[t] be sqr. free with positive deg., I ∤ D irr., and consider I = x² + Dy² over k[t].
- Suppose that deg *D* is odd or $lc(-D) \notin k^{\times 2}$, which is to say $E = F(\sqrt{-D})/F$ is imaginary [Rosen, 2013].
- Then a necessary cond. for int. solvability is

 $\deg I$ is even if $\deg D$ is,

which we will always assume.

Let d_{∞} be the relative deg. of $\mathfrak{P}_{\infty} \mid \mathfrak{p}_{\infty}, \deg^* l = \frac{\deg l}{d_{\infty}} \in \mathbb{Z}_{>0}$ and choose sgn w.r.t the uniformizer $t^g/\sqrt{-D}$ (g the genus of E).

Primes of the form $x^2 + Dy^2$ in k[t]

- Let D ∈ k[t] be sqr. free with positive deg., I ∤ D irr., and consider I = x² + Dy² over k[t].
- Suppose that deg *D* is odd or $lc(-D) \notin k^{\times 2}$, which is to say $E = F(\sqrt{-D})/F$ is imaginary [Rosen, 2013].
- Then a necessary cond. for int. solvability is

 $\deg I$ is even if $\deg D$ is,

which we will always assume.

Let d_∞ be the relative deg. of 𝔅_∞ | 𝔅_∞, deg^{*} I = deg I/d_∞ ∈ ℤ_{>0} and choose sgn w.r.t the uniformizer t^g/√−D (g the genus of E).

Extending a result of Maciak

Corollary ([Lv, 2020], extends [Maciak, 2011])

Notations and assumptions above, we have

(a) if sgn(I) $(-1)^{\text{deg}^* I} \in k^{\times 2}$, then $I = x^2 + Dy^2$ is solvable over k[t] if and only if

 $(\frac{l}{r}) = 1$ for each monic irr. factor $r \mid D$ and

I splits completely in $K^+_{\mathfrak{P}_{\infty}}$;

(b) if sgn(l)(-1)^{deg* $l \notin k^{\times 2}$}, then $l = x^2 + Dy^2$ is solvable over k[t] if and only if

- $\blacksquare (\frac{l}{r}) = 1 \text{ for each monic irr. factor } r \mid D,$
- I splits completely in $K_{\mathfrak{P}_{\infty}}$ and
- the relative deg. of *I* in $K_{\mathfrak{P}_{\infty}}^+$ is 2.

To show it, use the Thm. 2.1 and calculate the Artin cond.

Extending a result of Maciak

Corollary ([Lv, 2020], extends [Maciak, 2011])

Notations and assumptions above, we have

- (a) if sgn(I)(-1)^{deg* $I \in k^{\times 2}$}, then $I = x^2 + Dy^2$ is solvable over k[t] if and only if
 - $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$ and

I splits completely in $K_{\mathfrak{P}_{\infty}}^+$;

(b) if sgn(l)(-1)^{deg* $l \notin k^{\times 2}$}, then $l = x^2 + Dy^2$ is solvable over k[t] if and only if

- $\blacksquare \left(\frac{l}{r}\right) = 1 \text{ for each monic irr. factor } r \mid D,$
- I splits completely in $K_{\mathfrak{P}_{\infty}}$ and
- the relative deg. of *I* in $K_{\mathfrak{P}_{\infty}}^+$ is 2.

To show it, use the Thm. 2.1 and calculate the Artin cond.

Extending a result of Maciak

Corollary ([Lv, 2020], extends [Maciak, 2011])

Notations and assumptions above, we have

- (a) if sgn(l)(-1)^{deg* $l \in k^{\times 2}$}, then $l = x^2 + Dy^2$ is solvable over k[t] if and only if
 - $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$ and
 - *I* splits completely in $K_{\mathfrak{P}_{\infty}}^+$;

(b) if sgn(l)(-1)^{deg* $l \notin k^{\times 2}$}, then $l = x^2 + Dy^2$ is solvable over k[t] if and only if

- $\blacksquare \left(\frac{l}{r}\right) = 1 \text{ for each monic irr. factor } r \mid D,$
- I splits completely in $K_{\mathfrak{P}_{\infty}}$ and
- the relative deg. of *I* in $K_{\mathfrak{P}_{\infty}}^+$ is 2.

To show it, use the Thm. 2.1 and calculate the Artin cond.

Extending a result of Maciak

Corollary ([Lv, 2020], extends [Maciak, 2011])

Notations and assumptions above, we have

- (a) if sgn(I)(-1)^{deg* $I \in k^{\times 2}$}, then $I = x^2 + Dy^2$ is solvable over k[t] if and only if
 - $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$ and

• *I* splits completely in
$$K_{\mathfrak{P}_{\infty}}^+$$
;

(b) if sgn(l) $(-1)^{\deg^* l} \notin k^{\times 2}$, then $l = x^2 + Dy^2$ is solvable over k[t] if and only if

- $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$,
- *I* splits completely in $K_{\mathfrak{P}_{\infty}}$ and

• the relative deg. of *l* in $K_{\mathfrak{B}_{\infty}}^+$ is 2.

To show it, use the Thm. 2.1 and calculate the Artin cond.

Extending a result of Maciak

Corollary ([Lv, 2020], extends [Maciak, 2011])

Notations and assumptions above, we have

- (a) if sgn(I)(-1)^{deg* $I \in k^{\times 2}$}, then $I = x^2 + Dy^2$ is solvable over k[t] if and only if
 - $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$ and

• *I* splits completely in
$$K_{\mathfrak{P}_{\infty}}^+$$
;

(b) if sgn(l)(-1)^{deg* $l \notin k^{\times 2}$}, then $l = x^2 + Dy^2$ is solvable over k[t] if and only if

- $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$,
- I splits completely in $K_{\mathfrak{P}_{\infty}}$ and
- the relative deg. of *I* in $K_{\mathfrak{P}_{\infty}}^+$ is 2.

To show it, use the Thm. 2.1 and calculate the Artin cond.

Extending a result of Maciak

Corollary ([Lv, 2020], extends [Maciak, 2011])

Notations and assumptions above, we have

- (a) if sgn(I)(-1)^{deg* $I \in k^{\times 2}$}, then $I = x^2 + Dy^2$ is solvable over k[t] if and only if
 - $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$ and

• *I* splits completely in
$$K_{\mathfrak{P}_{\infty}}^+$$
;

(b) if sgn(l) $(-1)^{\text{deg}^* l} \notin k^{\times 2}$, then $l = x^2 + Dy^2$ is solvable over k[t] if and only if

- $\left(\frac{l}{r}\right) = 1$ for each monic irr. factor $r \mid D$,
- I splits completely in $K_{\mathfrak{P}_{\infty}}$ and
- the relative deg. of *I* in $K_{\mathfrak{P}_{\infty}}^+$ is 2.

• To show it, use the Thm. 2.1 and calculate the Artin cond.

Outline revisited

Thanks for your attention.

1 Problem: is
$$ax^2 + bxy + cy^2 + g = 0$$
 solvable over $\mathbb{F}_q[t]$?

2 Solution: torsors under norm-one tori + class field theory

3 Application: primes of the form $x^2 + Dy^2$ in $\mathbb{F}_q[t]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@