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Background Motivation

On integer factorization

Let N = pq be an RSA modulus. Want to factor it . . .

Let Er ,N : y 2 = x3 − 2rNx elliptic curve over Q. It is known
that:

can find a very small r such that Er ,N has rank one (easy), and

can use a non-torsion point (hard) P ∈ Er ,N (Q) to factor N
(just gcd).

The problem reduces to find P: algorithm to find rational
points on varieties.
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Background Basic definition

Rational points

Let X/k variety, rational points is the set X (k).

Basically, for k number fields, it contained in adèlic points
X (Ak ).

Conversely, X (Ak ) 6= ∅ implies X (k) 6= ∅ ?
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Background Basic definition

Local-global principle

If so, say that local-global principle holds.

Not always true: 3X 3 + 4Y 3 + 5Z 3 = 0 over Q.

Then, how to resolve this ?
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Background Basic definition

Obstructions

People constructed some subsets X (k) ⊆ X (Ak )obs ⊆ X (Ak )
called obstructions.

For example, obs can be Br (Brauer-Manin), (ét,Br)
(étale-Brauer), desc (descent) . . .

Point is: for many X , X (Ak )obs 6= ∅ does implies X (k) 6= ∅ !

Today: Brauer-Manin obstruction X (Ak )Br, defined by Brauer
group and computable.
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Background Basic definition

Why algebraic stacks

Varieties are Sch (schemes). There are lager categories of
geometric objects Sch ⊂ Esp (algebraic spaces) ⊂ Chp
(algebraic stacks).

To study descent theory on H2-level, or moduli spaces
classifying geo. obs.

To apply them back to classical rational points.

To give a better understanding on finding rational points
(especially when equations has huge coefficients).
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Main results Algebraic stacks, Brauer groups and torsors

What are alg. stacks

“Functors” X : Schop → Gpd (groupoids) that are both
“sheaves” and “algebraic” . . .

Simplest example: BG (classifying stack), [X/G ] (quotient
stack) . . .

We can do most things on them like on varieties: rat. pts.,
local-global, obstructions, cohomology . . .

Especially, X (A)Br: this is crucial when local-global fails . . .
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Main results Algebraic stacks, Brauer groups and torsors

Example: a results on stacky curves

Let k be number field, p, q primes, and

Y(p,q) = Proj(Ok [X ,Y ,Z ]/(Z 2 − pX 2 − qY 2)),

acted on by µ2: [X : Y : Z ] 7→ [X : Y : −Z ].

Theorem 2.1 ([WL23])

There exists infinite many (p, q) such that the stacky curve
X(p,q) = [Y(p,q)/µ2] violating local-global principle for integral pts.

The curves has genus 1
2 .

Generalize Bhargava and Poonen [BP22].
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Main results Algebraic stacks, Brauer groups and torsors

Brauer groups

Brauer-Grothendieck group BrX = H2
ét(X ,Gm) defined for

every alg. stack X . X (A)Br.

Simplest example: Br(C) = Br(Fq) = 0, Br(R) = 1
2Z/Z,

Br(Qp) = Q/Z · · ·

The functor Br creates X (A)Br,

X (A)Br = {x ∈ X (A) | x∗ BrX ⊆ im(Br k → BrAk )}.
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Main results Algebraic stacks, Brauer groups and torsors

Obstructions made by functors

In general, let q : Ak → Spec k, for any stable functor F : (Chp/k)op → Set and
A ∈ F (X ),

X (Ak )A = {x ∈ X (Ak ) | A(x) ∈ im F (q)},

X (Ak )F =
⋂

A∈F (X )

X (Ak )A = {x ∈ X (Ak ) | im F (x) ⊆ im F (q)}.

Then
X (k)→ X (Ak )F ⊆ X (Ak )A ⊆ X (Ak ).

Remark

The map X (k)→ X (Ak ) is not necessary injective. For example, let G be a linear
k-group. Then

ker(BG(k)→ BG(Ak )) = ker(H1(k,G)→ Ȟ1
fppf(Ak ,G)) = X1(G/k)

does not necessarily vanish.
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Main results Algebraic stacks, Brauer groups and torsors

Torsors

Let G be a k-group, X/k ∈ Chp/k, a G -torsor over Xfppf is a
sheaf Y on Xfppf acted on by G , such that G ×Y ∼= Y ×Y .

Simplest example: X 2 + Y 2 = n is a G -torsor over Q where
G : X 2 + Y 2 = 1.

They form a groupoid Tors(Xfppf,G ).

Isomorphism classes Tors(Xfppf,G )/∼= classified by

Ȟ1
fppf(X ,G ).
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Ȟ1
fppf(X ,G ).

C. Lv Brauer-Manin Obstruction on Stacks



14/39

Main results Algebraic stacks, Brauer groups and torsors

Torsors

Let G be a k-group, X/k ∈ Chp/k, a G -torsor over Xfppf is a
sheaf Y on Xfppf acted on by G , such that G ×Y ∼= Y ×Y .

Simplest example: X 2 + Y 2 = n is a G -torsor over Q where
G : X 2 + Y 2 = 1.

They form a groupoid Tors(Xfppf,G ).

Isomorphism classes Tors(Xfppf,G )/∼= classified by

Ȟ1
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Main results Algebraic stacks, Brauer groups and torsors

Torsors are algebraic

Lemma 2.2

Any torsor Y ∈ Tors(Xfppf,G ) is algebraic, i.e., is in Chp/k .

In particular, a 1-morphism of algebraic stacks Y → X is in
Tors(Xfppf,G ) if and only if X ∼−→ [Y/G ] is the quotient stack.
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Main results Calculation of Brauer groups

Sansuc’s exact sequence

Let X be a k-var. and G a connected k-group acting on X .

Let Y = [X/G ] be the quo. stack, i.e., f : X → Y is in Tors(Y,G) (Lem. 2.2).

Let U = Gm/k×, Pic = H1
ét(−,Gm) ∈ PSh(Sch/k).

Theorem 2.3 ([LW23])

Have the exact sequence

0→ UY f ∗−→ U X → U G → PicY f ∗−→ Pic X → Pic G →

BrY f ∗−→ Br X
ρ∗−p∗2−−−−→ Br(G ×k X ),

where ρ, p2 : G ×k X → X is the action and projection.

Extend classical one by Sansuc [San81].
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where ρ, p2 : G ×k X → X is the action and projection.

Extend classical one by Sansuc [San81].
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Main results Calculation of Brauer groups

Torsionness of the Brauer group

Grothendieck [Gro68] showed that Br X is torsion for a regular
scheme X .

Corollary 2.4 ([LW23])

Let X ∈ Chp/k which can be covered by finitely many open
substacks [Xi/Gi ] where Xi is a smooth k-var. and Gi a linear
k-group acting on Xi . Then BrX is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular
Noetherian Deligne-Mumford stack are torsion.
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Main results Descent theory and the Brauer-Manin pairing

Fundamental exact sequence

Let D(k) be derived category of complexes of k-modules.

Let S be a k-group of multiplicative type,

whose Cartier dual Ŝ is a finitely generated k-module.

Let p : X → Spec k be an alg. stack, and KD′(X ) be cone of
Gm[1]→ Rp∗Gm[1] in D(k).

Theorem 2.5

Have the fundamental exact sequence

0→ H1(k, S)
p∗−→ H1

fppf(X ,S)
χ−→ HomD(k)(Ŝ ,KD′(X ))

∂−→

H2(k, S)
p∗−→ H2

fppf(X ,S),

where the map χ is the extended type.
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Main results Descent theory and the Brauer-Manin pairing

Descent

Let a ∈ H1(k, Ŝ) and X ∈ Chp/k.

I [Lv22] gave a commutative diagram

H1(X , S)
χ //

p∗(a)∪−

��

HomD(k)(Ŝ ,KD′(X ))

a∪−

��
Br1 X

r // H1(k,KD′(X )).

Let f : Y → X be an S-torsor. Define λ = χ([f ]), and

Brλ X = r−1(λ∗(H1(k, Ŝ))) ⊆ Br1 X .

Proposition 2.6 ([LW23])

We have X (Ak )f = X (Ak )Brλ
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Main results Descent theory and the Brauer-Manin pairing

The Brauer-Manin pairing

Suppose that X is of finite type over k .

As in classical case, the Brauer-Manin pairing for X

〈−,−〉BM : X (Ak )× BrX → Q/Z,

((xv )v ,A) 7→
∑

v∈Ωk

invv A(xv ),

is well-defined,

and the Brauer-Manin set X (Ak )Br coincides with the
classical definition using 〈−,−〉BM.

C. Lv Brauer-Manin Obstruction on Stacks



22/39

Main results Descent theory and the Brauer-Manin pairing

The Brauer-Manin pairing

Suppose that X is of finite type over k .

As in classical case, the Brauer-Manin pairing for X

〈−,−〉BM : X (Ak )× BrX → Q/Z,

((xv )v ,A) 7→
∑

v∈Ωk

invv A(xv ),

is well-defined,

and the Brauer-Manin set X (Ak )Br coincides with the
classical definition using 〈−,−〉BM.

C. Lv Brauer-Manin Obstruction on Stacks



22/39

Main results Descent theory and the Brauer-Manin pairing

The Brauer-Manin pairing

Suppose that X is of finite type over k .

As in classical case, the Brauer-Manin pairing for X

〈−,−〉BM : X (Ak )× BrX → Q/Z,

((xv )v ,A) 7→
∑

v∈Ωk

invv A(xv ),

is well-defined,

and the Brauer-Manin set X (Ak )Br coincides with the
classical definition using 〈−,−〉BM.

C. Lv Brauer-Manin Obstruction on Stacks



23/39

Main results Descent theory and the Brauer-Manin pairing

The Brauer-Manin pairing (a variant)

Writing Xv = X ×k kv , one also defines

BX = ker(Bra X →
∏

v∈Ωk

Bra Xv ).

For A ∈ BX and (xv ) ∈ X (Ak ),
〈(xv ),A〉BM =

∑
v∈Ωk

invv A(xv ) does not depend on the
choice of (xv ).

Upshot: assuming X (Ak ) 6= ∅, we obtain a well-defined map

i = 〈(xv ),−〉BM : BX → Q/Z.
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Main results Comparison to other cohomological. obs.
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Main results Comparison to other cohomological. obs.

Descent and second descent obstruction

Definition 2.7

The descent obstruction is

X (Ak )desc =
⋂

linear k-group G

X (Ak )Ȟ1
fppf(−,G).

We also define

X (Ak )conn =
⋂

conn. linear k-group G

X (Ak )Ȟ1
fppf(−,G),

and the second descent obstruction (c.f. [Lv21]) is

X (Ak )2-desc =
⋂

commutative linear k-group G

X (Ak )H2
ét(−,G).
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Main results Comparison to other cohomological. obs.

Comparison of obstructions

Theorem 2.8

Let X be a smooth alg. k-stack of f.t. that is either DM or Zariski-locally quo. of
k-var. by a linear k-group. Then

X (Ak )Br = X (Ak )2-desc.

Theorem 2.9

Let X be an alg. k-stack. Then

X (Ak )Br ⊆ X (Ak )conn.

Extend Harari [Har02].
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Main results Descent for Brauer-Manin set along a torsor
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Main results Descent for Brauer-Manin set along a torsor

Descent for Brauer-Manin set along a torsor

Let X = [Y /G ] where Y is a smooth geometrically integral k-var. and G a
conn. linear k-group acting on Y .

Let f : Y → X be the canonic map making Y a G -torosr over X .

One also defines invariant Brauer subgroup (as in Cao [Cao18]) to be

BrG X = {b ∈ BrX | ρ∗b − p∗2 b ∈ p∗1 Br G}

Theorem 2.10

Have
X (Ak )Br =

⋃
σ∈H1(k,G)

fσ(Yσ(Ak )BrGσ (Yσ)).

Key is to modify Sansuc exact seq. (Thm. 2.3) using BrG .

This extends Cao [Cao18].
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Main results Brauer-Manin set under a product

Known results

Let k be a number field.

The product preservation property of Brauer-Manin set was
first established by Skorobogatov and Zarhin [SZ14] for
smooth geo. int. projective k-vars.,

and later by me [Lv20] for open ones.
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Main results Brauer-Manin set under a product

Product of alg. stacks

Theorem 2.11

The functor
−(Ak )Br : Chp1/k → Set

preserves finite product, where Chp1/k ⊂ Chp/k is the full
sub-2-category spanned by smooth alg. k-stacks of f.t

admitting separated and geo. int. atlases X s.t. X (Ak )B 6= ∅,
and is either DM or Zariski-locally quos. of k-var. by linear
k-groups.
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Main results Brauer-Manin set under a product

Key ingredients of proof

The torsionness of BrX (Cor. 2.4).

Existence of universal torsor of n-torsion

Künneth formula for H i
ét(−, µn) on k, i = 1, 2:

Künneth for stacks Rp∗K �L
Λ Rq∗L ∼= R(p × q)∗(K �L

Λ L) (coh.
desc),

Smooth base change p∗Rf∗ → Rg∗q∗ for stacks (Liu and
Zheng [LZ17]).
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Main results Brauer-Manin set under a product

Corollary 2.12

If X and Y are stacks quos. of smooth geo. int. k-varieties by
conn. linear k-groups. Then

X (Ak )Br × Y(Ak )Br ∼−→ (X ×k Y)(Ak )Br
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What’s next ? Open problems

Open problems

Do we have

X (Ak )Br ⊇ X (A)ét,Br ∼= X (A)desc ∼= X (A)desc,desc ?

(it is true for varieties)

Is X (Ak )2-desc,desc really smaller than X (A)desc ?
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What’s next ? Applications
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What’s next ? Applications

Applications

Use these to develop an effective algorithm finding rational
points . . .

Especially E (Q) where E : y 2 = x3 − 2rNx · · ·
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What’s next ? Applications

Thanks for your attention.
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