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Background Basic definition

Rational points

Let X/k variety, rational points is the set X (k).

Basically, for k number fields, it contained in adèlic points
X (Ak ).

Conversely, X (Ak ) 6= ∅ implies X (k) 6= ∅ ?
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Background Basic definition

Local-global principle

If so, say that local-global principle holds.

Not always true: 3X 3 + 4Y 3 + 5Z 3 = 0 over Q.

Then, how to resolve this ?
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Background Basic definition

Obstructions

People constructed some subsets X (k) ⊆ X (Ak )obs ⊆ X (Ak )
called obstructions.

most obs comes from a functor F , namely,

for F : (Sch/k )op → Set, the map X (k)→ X (Ak ) factorizes as

X (k)→ Map(F (X ),F (k))×Map(F (X ),F (Ak )) X (Ak )
q∗

−→ X (Ak ),

and we define X (Ak )F = im(q∗) (q : Spec Ak → Spec k).

Point is: for many X , X (Ak )obs 6= ∅ does implies X (k) 6= ∅ !
And can help to find P ∈ X (k).

Example: Brauer-Manin obstruction X (Ak )Br, defined by
Brauer group and computable.
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Background Basic definition

Algebraic stacks

Varieties are Sch (schemes). There are lager categories of
geometric objects Sch ⊂ Esp (algebraic spaces) ⊂ Chp
(algebraic stacks).

Simplest example: BG (classifying stack), [X/G ] (quotient
stack) . . .

Remark
The map X (k)→ X (Ak ) is not necessary injective. For example, let G be a linear
k-group. Then

ker(BG(k)→ BG(Ak )) = ker(H1(k,G)→ Ȟ1
fppf(Ak ,G)) = X1(G/k)

does not necessarily vanish.
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Classical & known results Relations between obstructons on varieties

Relations between obstructons on varieties

We have for smooth, quasi-projective geometrically integral
k-variety X ([Har02, Poo17, Sto07, Sko09, Dem09, Poo10,
HS13, CDX19, Cao20]),

X (Ak )Br = X (Ak )PGL = X (Ak )conn = X (Ak )2-desc =

X (Ak )Zh ⊇ X (Ak )h =

X (Ak )desc,desc = X (Ak )fin,desc = X (Ak )ét,Br = X (Ak )desc.
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Classical & known results Local-global principle
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Classical & known results Local-global principle

Example: a results on stacky curves

Let k be number field, p, q primes, and

Y(p,q) = Proj(Ok [X ,Y ,Z ]/(Z 2 − pX 2 − qY 2)),

acted on by µ2: [X : Y : Z ] 7→ [X : Y : −Z ].

Theorem 2.1 ([WL23])

There exists infinite many (p, q) such that the stacky curve
X(p,q) = [Y(p,q)/µ2] violating local-global principle for integral pts.

The curves has genus 1
2 .

Generalize Bhargava and Poonen [BP22].
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Main results Calculation of Brauer groups
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Main results Calculation of Brauer groups

Brauer groups

Brauer-Grothendieck group BrX = H2
ét(X ,Gm) defined for

every alg. stack X . X (A)Br.

Simplest example: Br(C) = Br(Fq) = 0, Br(R) = 1
2Z/Z,

Br(Qp) = Q/Z · · ·

The functor Br creates X (A)Br,

X (A)Br = {x ∈ X (A) | x∗ BrX ⊆ im(Br k → Br Ak )}.
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Main results Calculation of Brauer groups

Sansuc’s exact sequence

Let X be a k-var. and G a connected k-group acting on X .

Let Y = [X/G ] be the quo. stack, i.e., f : X → Y is in Tors(Y,G).

Let U = Gm/k×, Pic = H1
ét(−,Gm) ∈ P(Sch/k ).

Theorem 3.1 ([LW23])

Have the exact sequence

0→ UY f ∗−→ UX → UG → PicY f ∗−→ PicX → PicG →

BrY f ∗−→ BrX
ρ∗−p∗2−−−−→ Br(G ×k X ),

where ρ, p2 : G ×k X → X is the action and projection.

Extend classical one by Sansuc [San81].
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Main results Calculation of Brauer groups

Torsionness of the Brauer group

Grothendieck [Gro68] showed that BrX is torsion for a regular
scheme X .

Corollary 3.2 ([LW23])

Let X ∈ Chp/k which can be covered by finitely many open
substacks [Xi/Gi ] where Xi is a smooth k-var. and Gi a linear
k-group acting on Xi . Then BrX is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular
Noetherian Deligne-Mumford stack are torsion.

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


14/32

Main results Calculation of Brauer groups

Torsionness of the Brauer group

Grothendieck [Gro68] showed that BrX is torsion for a regular
scheme X .

Corollary 3.2 ([LW23])

Let X ∈ Chp/k which can be covered by finitely many open
substacks [Xi/Gi ] where Xi is a smooth k-var. and Gi a linear
k-group acting on Xi . Then BrX is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular
Noetherian Deligne-Mumford stack are torsion.

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


14/32

Main results Calculation of Brauer groups

Torsionness of the Brauer group

Grothendieck [Gro68] showed that BrX is torsion for a regular
scheme X .

Corollary 3.2 ([LW23])

Let X ∈ Chp/k which can be covered by finitely many open
substacks [Xi/Gi ] where Xi is a smooth k-var. and Gi a linear
k-group acting on Xi . Then BrX is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular
Noetherian Deligne-Mumford stack are torsion.

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


14/32

Main results Calculation of Brauer groups

Torsionness of the Brauer group

Grothendieck [Gro68] showed that BrX is torsion for a regular
scheme X .

Corollary 3.2 ([LW23])

Let X ∈ Chp/k which can be covered by finitely many open
substacks [Xi/Gi ] where Xi is a smooth k-var. and Gi a linear
k-group acting on Xi . Then BrX is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular
Noetherian Deligne-Mumford stack are torsion.

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


15/32
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Main results Descent theory and the Brauer-Manin pairing

Fundamental exact sequence

Let D(k) be derived category of complexes of k-modules.

Let S be a k-group of multiplicative type,

whose Cartier dual Ŝ is a finitely generated k-module.

Let p : X → Spec k be an alg. stack, and KD′(X ) be cone of
Gm[1]→ Rp∗Gm[1] in D(k).

Theorem 3.3 ([LW23])

Have the fundamental exact sequence

0→ H1(k, S)
p∗−→ H1

fppf(X ,S)
χ−→ HomD(k)(Ŝ ,KD′(X ))

∂−→

H2(k, S)
p∗−→ H2

fppf(X ,S),

where the map χ is the extended type.
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Main results Comparison to other cohomological. obs.
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Main results Comparison to other cohomological. obs.

Comparison of obstructions

Theorem 3.4 ([LW23])

Let X be a smooth alg. k-stack of f.t. that is either DM or Zariski-locally quo. of
k-var. by a linear k-group. Then

X (Ak )Br = X (Ak )2-desc.

Theorem 3.5 ([LW23])

Let X be an alg. k-stack. Then

X (Ak )Br ⊆ X (Ak )conn.

Extend Harari [Har02].
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Main results Comparison to other cohomological. obs.

Comparison of obstructions (cont.)

Theorem 3.6 ([WL24])

Let X be an algebraic k-stack. Then we have

X (Ak )desc = X (Ak )fin,desc.

Extend [Sko09, CDX19].
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Main results Descent for Brauer-Manin set along a torsor
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Main results Descent for Brauer-Manin set along a torsor

Descent for Brauer-Manin set along a torsor

Let X = [Y /G ] where Y is a smooth geometrically integral k-var. and G a
conn. linear k-group acting on Y .

Let f : Y → X be the canonic map making Y a G -torosr over X .

One also defines invariant Brauer subgroup (as in Cao [Cao18]) to be

BrG X = {b ∈ BrX | ρ∗b − p∗2 b ∈ p∗1 Br G}

Theorem 3.7 ([LW23])

Have
X (Ak )Br =

⋃
σ∈H1(k,G)

fσ(Yσ(Ak )BrGσ (Yσ)).

Key is to modify Sansuc exact seq. (Thm. 3.1) using BrG .

This extends Cao [Cao18].
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Main results Brauer-Manin set under a product

Outline

1 Background
Basic definition

2 Classical & known results
Relations between obstructons on varieties
Local-global principle

3 Main results
Calculation of Brauer groups
Descent theory and the Brauer-Manin pairing
Comparison to other cohomological. obs.
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Brauer-Manin set under a product
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Main results Brauer-Manin set under a product

Known results

Let k be a number field.

The product preservation property of Brauer-Manin set was
first established by Skorobogatov and Zarhin [SZ14] for
smooth geo. int. projective k-vars.,

and later by me [Lv20] for open ones.

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


23/32

Main results Brauer-Manin set under a product

Known results

Let k be a number field.

The product preservation property of Brauer-Manin set was
first established by Skorobogatov and Zarhin [SZ14] for
smooth geo. int. projective k-vars.,

and later by me [Lv20] for open ones.

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


24/32

Main results Brauer-Manin set under a product

Product of alg. stacks

Theorem 3.8 ([LW23])

The functor
−(Ak )Br : (Chp1)/k → Set

preserves finite product, where (Chp1)/k ⊂ Chp/k is the full
sub-2-category spanned by smooth alg. k-stacks of f.t

admitting separated and geo. int. atlases X s.t. X (Ak )B 6= ∅,
and is either DM or Zariski-locally quos. of k-var. by linear
k-groups.
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Main results Brauer-Manin set under a product

Corollary 3.9 ([LW23])

If X and Y are stacks quos. of smooth geo. int. k-varieties by
conn. linear k-groups. Then

X (Ak )Br × Y(Ak )Br ∼−→ (X ×k Y)(Ak )Br
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What’s next ? Cohomological descent
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What’s next ? Cohomological descent

Motivation

Recall in Theorem 3.5, how to show the converse inclusion ?

Want a way both carrying obstructions and satisfying descent.

A formalism of cohomological descent encoding adèlic points
and obstructions.

Applying [LZ17].
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and obstructions.

Applying [LZ17].

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


28/32

What’s next ? Cohomological descent

Main result

Theorem 4.1 ([Lv24])

Let Λ ∈ Ring�-tor. Then there is a functor

Cobs : N(Chplft, �
/S )op → PrL

such that for any f : X0 → X−1 being a smooth surjective map in
Chplft, �

/S and X• : N(∆+)op → Chplft, �
/S its Čech nerve, the map is

an equivalence
Cobs(X−1)→ lim←−

n∈∆

Cobs(Xn).

The presentable ∞-category Cobs(X ) “contained in”
Fun(D(A),D(X )) is the “smallest” one containing all x∗,
x ∈ X (A)obs, in a functorial way.
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What’s next ? Open problems

Open problems

For X ∈ Chp/k ,

do we have

X (Ak )ét,Br = X (Ak )desc = X (Ak )desc,desc ?

(it is true for varieties)

Is X (Ak )2-desc,desc really smaller than X (Ak )desc ?

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


30/32

What’s next ? Open problems

Open problems

For X ∈ Chp/k ,

do we have

X (Ak )ét,Br = X (Ak )desc = X (Ak )desc,desc ?

(it is true for varieties)

Is X (Ak )2-desc,desc really smaller than X (Ak )desc ?

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


30/32

What’s next ? Open problems

Open problems

For X ∈ Chp/k ,

do we have

X (Ak )ét,Br = X (Ak )desc = X (Ak )desc,desc ?

(it is true for varieties)

Is X (Ak )2-desc,desc really smaller than X (Ak )desc ?

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io


31/32

What’s next ? Open problems

Thanks for your attention.
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Nombres de Bordeaux (2023), 1–5.

[WL24] , Iterated descent obstructions for algebraic stacks, arXiv preprint arXiv:2409.20068 (2024), 1–9.

Chang Lv https://c-lv.github.io Obstructions to local-global on stacks ^ ^

https://c-lv.github.io

	Background
	Basic definition

	Classical & known results
	Relations between obstructons on varieties
	Local-global principle

	Main results
	Calculation of Brauer groups
	Descent theory and the Brauer-Manin pairing
	Comparison to other cohomological. obs.
	Descent for Brauer-Manin set along a torsor
	Brauer-Manin set under a product

	What's next ?
	Cohomological descent
	Open problems


