

Obstructions to local-global principle on algebraic stacks

Chang Lv

Key Laboratory of Cyberspace Security Defense (**KLCSD**),
Institute of Information Engineering (**IIE**),
Chinese Academy of Sciences (**CAS**)

Number Theory Day, CNU

December 27, 2024

Outline

- 1** Background
 - Basic definition
- 2** Classical & known results
 - Relations between obstructions on varieties
 - Local-global principle
- 3** Main results
 - Calculation of Brauer groups
 - Descent theory and the Brauer-Manin pairing
 - Comparison to other cohomological. obs.
 - Descent for Brauer-Manin set along a torsor
 - Brauer-Manin set under a product
- 4** What's next ?
 - Cohomological descent
 - Open problems

Rational points

- Let X/k variety, **rational points** is the set $X(k)$.
- Basically, for k number fields, it contained in **adèlic points** $X(\mathbf{A}_k)$.
- Conversely, $X(\mathbf{A}_k) \neq \emptyset$ implies $X(k) \neq \emptyset$?

Rational points

- Let X/k variety, rational points is the set $X(k)$.
- Basically, for k number fields, it contained in adèlic points $X(\mathbf{A}_k)$.
- Conversely, $X(\mathbf{A}_k) \neq \emptyset$ implies $X(k) \neq \emptyset$?

Rational points

- Let X/k variety, rational points is the set $X(k)$.
- Basically, for k number fields, it contained in adèlic points $X(\mathbf{A}_k)$.
- Conversely, $X(\mathbf{A}_k) \neq \emptyset$ implies $X(k) \neq \emptyset$?

Local-global principle

- If so, say that local-global principle holds.
- Not always true: $3X^3 + 4Y^3 + 5Z^3 = 0$ over \mathbb{Q} .
- Then, how to resolve this ?

Local-global principle

- If so, say that local-global principle holds.
- Not always true: $3X^3 + 4Y^3 + 5Z^3 = 0$ over \mathbb{Q} .
- Then, how to resolve this ?

Local-global principle

- If so, say that local-global principle holds.
- Not always true: $3X^3 + 4Y^3 + 5Z^3 = 0$ over \mathbb{Q} .
- Then, how to resolve this ?

Obstructions

- People constructed some subsets $X(k) \subseteq X(\mathbf{A}_k)^{\text{obs}} \subseteq X(\mathbf{A}_k)$ called **obstructions**.
 - most obs comes from a functor F , namely,
 - for $F : (\text{Sch}/k)^{\text{op}} \rightarrow \text{Set}$, the map $X(k) \rightarrow X(\mathbf{A}_k)$ factorizes as $X(k) \rightarrow \text{Map}(F(X), F(k)) \times_{\text{Map}(F(X), F(\mathbf{A}_k))} X(\mathbf{A}_k) \xrightarrow{q^*} X(\mathbf{A}_k)$,
 - and we define $X(\mathbf{A}_k)^F = \text{im}(q^*)$ ($q : \text{Spec } \mathbf{A}_k \rightarrow \text{Spec } k$).
- Point is: for many X , $X(\mathbf{A}_k)^{\text{obs}} \neq \emptyset$ **does** implies $X(k) \neq \emptyset$!
And can help to find $P \in X(k)$.
- Example: Brauer-Manin obstruction $X(\mathbf{A}_k)^{\text{Br}}$, defined by Brauer group and **computable**.

Obstructions

- People constructed some subsets $X(k) \subseteq X(\mathbf{A}_k)^{\text{obs}} \subseteq X(\mathbf{A}_k)$ called **obstructions**.
 - most obs comes from a functor F , namely,
 - for $F : (\mathcal{S}\text{ch}_{/k})^{\text{op}} \rightarrow \mathcal{S}\text{et}$, the map $X(k) \rightarrow X(\mathbf{A}_k)$ factorizes as $X(k) \rightarrow \text{Map}(F(X), F(k)) \times_{\text{Map}(F(X), F(\mathbf{A}_k))} X(\mathbf{A}_k) \xrightarrow{q^*} X(\mathbf{A}_k)$,
 - and we define $X(\mathbf{A}_k)^F = \text{im}(q^*)$ ($q : \text{Spec } \mathbf{A}_k \rightarrow \text{Spec } k$).
- Point is: for many X , $X(\mathbf{A}_k)^{\text{obs}} \neq \emptyset$ **does** implies $X(k) \neq \emptyset$!
And can help to find $P \in X(k)$.
- Example: Brauer-Manin obstruction $X(\mathbf{A}_k)^{\text{Br}}$, defined by Brauer group and **computable**.

Obstructions

- People constructed some subsets $X(k) \subseteq X(\mathbf{A}_k)^{\text{obs}} \subseteq X(\mathbf{A}_k)$ called **obstructions**.
 - most obs comes from a functor F , namely,
 - for $F : (\mathcal{S}\text{ch}_{/k})^{\text{op}} \rightarrow \mathcal{S}\text{et}$, the map $X(k) \rightarrow X(\mathbf{A}_k)$ factorizes as $X(k) \rightarrow \text{Map}(F(X), F(k)) \times_{\text{Map}(F(X), F(\mathbf{A}_k))} X(\mathbf{A}_k) \xrightarrow{q^*} X(\mathbf{A}_k)$,
 - and we define $X(\mathbf{A}_k)^F = \text{im}(q^*) \quad (q : \text{Spec } \mathbf{A}_k \rightarrow \text{Spec } k)$.
- Point is: for many X , $X(\mathbf{A}_k)^{\text{obs}} \neq \emptyset$ does implies $X(k) \neq \emptyset$!
And can help to find $P \in X(k)$.
- Example: Brauer-Manin obstruction $X(\mathbf{A}_k)^{\text{Br}}$, defined by Brauer group and computable.

Obstructions

- People constructed some subsets $X(k) \subseteq X(\mathbf{A}_k)^{\text{obs}} \subseteq X(\mathbf{A}_k)$ called **obstructions**.
 - most obs comes from a functor F , namely,
 - for $F : (\mathcal{S}\text{ch}_{/k})^{\text{op}} \rightarrow \mathcal{S}\text{et}$, the map $X(k) \rightarrow X(\mathbf{A}_k)$ factorizes as $X(k) \rightarrow \text{Map}(F(X), F(k)) \times_{\text{Map}(F(X), F(\mathbf{A}_k))} X(\mathbf{A}_k) \xrightarrow{q^*} X(\mathbf{A}_k)$,
 - and we define $X(\mathbf{A}_k)^F = \text{im}(q^*) \quad (q : \text{Spec } \mathbf{A}_k \rightarrow \text{Spec } k)$.
- Point is: for many X , $X(\mathbf{A}_k)^{\text{obs}} \neq \emptyset$ **does** implies $X(k) \neq \emptyset$!
And can help to find $P \in X(k)$.
- Example: Brauer-Manin obstruction $X(\mathbf{A}_k)^{\text{Br}}$, defined by Brauer group and **computable**.

Obstructions

- People constructed some subsets $X(k) \subseteq X(\mathbf{A}_k)^{\text{obs}} \subseteq X(\mathbf{A}_k)$ called **obstructions**.
 - most obs comes from a functor F , namely,
 - for $F : (\mathcal{S}\text{ch}_{/k})^{\text{op}} \rightarrow \mathcal{S}\text{et}$, the map $X(k) \rightarrow X(\mathbf{A}_k)$ factorizes as $X(k) \rightarrow \text{Map}(F(X), F(k)) \times_{\text{Map}(F(X), F(\mathbf{A}_k))} X(\mathbf{A}_k) \xrightarrow{q^*} X(\mathbf{A}_k)$,
 - and we define $X(\mathbf{A}_k)^F = \text{im}(q^*) \quad (q : \text{Spec } \mathbf{A}_k \rightarrow \text{Spec } k)$.
- Point is: for many X , $X(\mathbf{A}_k)^{\text{obs}} \neq \emptyset$ **does** implies $X(k) \neq \emptyset$!
And can help to find $P \in X(k)$.
- Example: **Brauer-Manin** obstruction $X(\mathbf{A}_k)^{\text{Br}}$, defined by **Brauer group** and **computable**.

Algebraic stacks

- Varieties are Sch ([schemes](#)). There are larger categories of geometric objects $\text{Sch} \subset \mathcal{E}\text{sp}$ ([algebraic spaces](#)) $\subset \mathcal{C}\text{hp}$ ([algebraic stacks](#)).
- Simplest example: BG ([classifying stack](#)), $[X/G]$ ([quotient stack](#)) ...

Remark

The map $\mathcal{X}(k) \rightarrow \mathcal{X}(\mathbf{A}_k)$ is [not](#) necessarily injective. For example, let G be a linear k -group. Then

$$\ker(BG(k) \rightarrow BG(\mathbf{A}_k)) = \ker(H^1(k, G) \rightarrow \check{H}_{\text{fppf}}^1(\mathbf{A}_k, G)) = \text{H}^1(G/k)$$

does not necessarily vanish.

Algebraic stacks

- Varieties are Sch ([schemes](#)). There are larger categories of geometric objects $\text{Sch} \subset \mathcal{E}\text{sp}$ ([algebraic spaces](#)) $\subset \mathcal{C}\text{hp}$ ([algebraic stacks](#)).
- Simplest example: BG ([classifying stack](#)), $[X/G]$ ([quotient stack](#)) ...

Remark

The map $\mathcal{X}(k) \rightarrow \mathcal{X}(\mathbb{A}_k)$ is [not](#) necessarily injective. For example, let G be a linear k -group. Then

$$\ker(BG(k) \rightarrow BG(\mathbb{A}_k)) = \ker(H^1(k, G) \rightarrow \check{H}_{\text{fppf}}^1(\mathbb{A}_k, G)) = \text{H}^1(G/k)$$

does not necessarily vanish.

Algebraic stacks

- Varieties are Sch ([schemes](#)). There are larger categories of geometric objects $\text{Sch} \subset \mathcal{E}\text{sp}$ ([algebraic spaces](#)) $\subset \mathcal{C}\text{hp}$ ([algebraic stacks](#)).
- Simplest example: BG ([classifying stack](#)), $[X/G]$ ([quotient stack](#)) ...

Remark

The map $\mathcal{X}(k) \rightarrow \mathcal{X}(\mathbf{A}_k)$ is **not** necessarily injective. For example, let G be a linear k -group. Then

$$\ker(BG(k) \rightarrow BG(\mathbf{A}_k)) = \ker(H^1(k, G) \rightarrow \check{H}_{\text{fppf}}^1(\mathbf{A}_k, G)) = \text{III}^1(G/k)$$

does not necessarily vanish.

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

- Calculation of Brauer groups
- Descent theory and the Brauer-Manin pairing
- Comparison to other cohomological. obs.
- Descent for Brauer-Manin set along a torsor
- Brauer-Manin set under a product

4 What's next ?

- Cohomological descent
- Open problems

Relations between obstructions on varieties

- We have for smooth, quasi-projective geometrically integral k -variety X ([Har02, Poo17, Sto07, Sko09, Dem09, Poo10, HS13, CDX19, Cao20]),

$$\begin{aligned} X(\mathbf{A}_k)^{\text{Br}} &= X(\mathbf{A}_k)^{\text{PGL}} = X(\mathbf{A}_k)^{\text{conn}} = X(\mathbf{A}_k)^{\text{2-desc}} = \\ &X(\mathbf{A}_k)^{\mathbb{Z}h} \supseteq X(\mathbf{A}_k)^h = \\ X(\mathbf{A}_k)^{\text{desc,desc}} &= X(\mathbf{A}_k)^{\text{fin,desc}} = X(\mathbf{A}_k)^{\text{ét,Br}} = X(\mathbf{A}_k)^{\text{desc}}. \end{aligned}$$

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

- Calculation of Brauer groups
- Descent theory and the Brauer-Manin pairing
- Comparison to other cohomological. obs.
- Descent for Brauer-Manin set along a torsor
- Brauer-Manin set under a product

4 What's next ?

- Cohomological descent
- Open problems

Example: a results on stacky curves

- Let k be number field, p, q primes, and
- $\mathcal{Y}_{(p,q)} = \text{Proj}(\mathcal{O}_k[X, Y, Z]/(Z^2 - pX^2 - qY^2))$,
- acted on by μ_2 : $[X : Y : Z] \mapsto [X : Y : -Z]$.

Theorem 2.1 ([WL23])

There exists infinite many (p, q) such that the stacky curve $\mathcal{X}_{(p,q)} = [\mathcal{Y}_{(p,q)} / \mu_2]$ **violating** local-global principle for integral pts.

- The curves has genus $\frac{1}{2}$.
- Generalize Bhargava and Poonen [BP22].

Example: a results on stacky curves

- Let k be number field, p, q primes, and
- $\mathcal{Y}_{(p,q)} = \text{Proj}(\mathcal{O}_k[X, Y, Z]/(Z^2 - pX^2 - qY^2))$,
- acted on by μ_2 : $[X : Y : Z] \mapsto [X : Y : -Z]$.

Theorem 2.1 ([WL23])

There exists infinite many (p, q) such that the stacky curve $\mathcal{X}_{(p,q)} = [\mathcal{Y}_{(p,q)} / \mu_2]$ **violating** local-global principle for integral pts.

- The curves has genus $\frac{1}{2}$.
- Generalize Bhargava and Poonen [BP22].

Example: a results on stacky curves

- Let k be number field, p, q primes, and
- $\mathcal{Y}_{(p,q)} = \text{Proj}(\mathcal{O}_k[X, Y, Z]/(Z^2 - pX^2 - qY^2))$,
- acted on by μ_2 : $[X : Y : Z] \mapsto [X : Y : -Z]$.

Theorem 2.1 ([WL23])

There exists infinite many (p, q) such that the stacky curve $\mathcal{X}_{(p,q)} = [\mathcal{Y}_{(p,q)} / \mu_2]$ **violating** local-global principle for integral pts.

- The curves has genus $\frac{1}{2}$.
- Generalize Bhargava and Poonen [BP22].

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

■ Calculation of Brauer groups

- Descent theory and the Brauer-Manin pairing
- Comparison to other cohomological. obs.
- Descent for Brauer-Manin set along a torsor
- Brauer-Manin set under a product

4 What's next ?

- Cohomological descent
- Open problems

Brauer groups

- Brauer-Grothendieck group $\mathrm{Br} \mathcal{X} = H^2_{\text{ét}}(\mathcal{X}, \mathbf{G}_m)$ defined for every alg. stack \mathcal{X} . $\mathcal{X}(\mathcal{A})^{\mathrm{Br}}$.

- Simplest example: $\mathrm{Br}(\mathbb{C}) = \mathrm{Br}(\mathbb{F}_q) = 0$, $\mathrm{Br}(\mathbb{R}) = \frac{1}{2}\mathbb{Z}/\mathbb{Z}$, $\mathrm{Br}(\mathbb{Q}_p) = \mathbb{Q}/\mathbb{Z} \dots$

- The functor Br creates $\mathcal{X}(\mathcal{A})^{\mathrm{Br}}$,

$$\mathcal{X}(\mathcal{A})^{\mathrm{Br}} = \{x \in \mathcal{X}(\mathcal{A}) \mid x^* \mathrm{Br} \mathcal{X} \subseteq \mathrm{im}(\mathrm{Br} k \rightarrow \mathrm{Br} \mathbf{A}_k)\}.$$

Brauer groups

- Brauer-Grothendieck group $\text{Br } \mathcal{X} = H^2_{\text{ét}}(\mathcal{X}, \mathbf{G}_m)$ defined for every alg. stack \mathcal{X} . $\mathcal{X}(\mathcal{A})^{\text{Br}}$.
 - Simplest example: $\text{Br}(\mathbb{C}) = \text{Br}(\mathbb{F}_q) = 0$, $\text{Br}(\mathbb{R}) = \frac{1}{2}\mathbb{Z}/\mathbb{Z}$, $\text{Br}(\mathbb{Q}_p) = \mathbb{Q}/\mathbb{Z} \dots$
- The functor Br creates $\mathcal{X}(\mathcal{A})^{\text{Br}}$,
$$\mathcal{X}(\mathcal{A})^{\text{Br}} = \{x \in \mathcal{X}(\mathcal{A}) \mid x^* \text{Br } \mathcal{X} \subseteq \text{im}(\text{Br } k \rightarrow \text{Br } \mathbf{A}_k)\}.$$

Brauer groups

- Brauer-Grothendieck group $\mathrm{Br} \mathcal{X} = H^2_{\text{ét}}(\mathcal{X}, \mathbf{G}_m)$ defined for every alg. stack \mathcal{X} . $\mathcal{X}(\mathcal{A})^{\mathrm{Br}}$.
 - Simplest example: $\mathrm{Br}(\mathbb{C}) = \mathrm{Br}(\mathbb{F}_q) = 0$, $\mathrm{Br}(\mathbb{R}) = \frac{1}{2}\mathbb{Z}/\mathbb{Z}$, $\mathrm{Br}(\mathbb{Q}_p) = \mathbb{Q}/\mathbb{Z} \dots$
- The functor Br creates $\mathcal{X}(\mathcal{A})^{\mathrm{Br}}$,
$$\mathcal{X}(\mathcal{A})^{\mathrm{Br}} = \{x \in \mathcal{X}(\mathcal{A}) \mid x^* \mathrm{Br} \mathcal{X} \subseteq \mathrm{im}(\mathrm{Br} k \rightarrow \mathrm{Br} \mathbf{A}_k)\}.$$

Sansuc's exact sequence

- Let X be a k -var. and G a **connected** k -group acting on X .
- Let $\mathcal{Y} = [X/G]$ be the **quo. stack**, i.e., $f : X \rightarrow \mathcal{Y}$ is in $\text{Tors}(\mathcal{Y}, G)$.
- Let $\mathbf{U} = \mathbf{G}_m/k^\times$, $\text{Pic} = H_{\text{ét}}^1(-, \mathbf{G}_m) \in \mathcal{P}(\mathcal{S}\text{ch}_k)$.

Theorem 3.1 ([LW23])

Have the exact sequence

$$0 \rightarrow \mathbf{U}/\mathcal{Y} \xrightarrow{\mathcal{F}_1} \mathbf{U}/X \rightarrow \mathbf{U}/G \rightarrow \text{Pic}(\mathcal{Y}) \xrightarrow{\mathcal{F}_2} \text{Pic}(X) \rightarrow \text{Pic}(G) \rightarrow \\ \text{Br}(\mathcal{Y}) \xrightarrow{\mathcal{F}_3} \text{Br}(X) \xrightarrow{\mathcal{F}_4 = p_2^*} \text{Br}(G \times_k X),$$

where $\rho, p_2 : G \times_k X \rightarrow X$ is the action and projection.

- Extend classical one by Sansuc [San81].

Sansuc's exact sequence

- Let X be a k -var. and G a **connected** k -group acting on X .
- Let $\mathcal{Y} = [X/G]$ be the **quo. stack**, i.e., $f : X \rightarrow \mathcal{Y}$ is in $\text{Tors}(\mathcal{Y}, G)$.
- Let $\mathbf{U} = \mathbf{G}_m/k^\times$, $\text{Pic} = H^1_{\text{ét}}(-, \mathbf{G}_m) \in \mathcal{P}(\mathcal{S}\text{ch}_k)$.

Theorem 3.1 ([LW23])

Have the exact sequence

$$0 \rightarrow \mathbf{U} \mathcal{Y} \xrightarrow{f^*} \mathbf{U} X \rightarrow \mathbf{U} G \rightarrow \text{Pic } \mathcal{Y} \xrightarrow{f^*} \text{Pic } X \rightarrow \text{Pic } G \rightarrow \\ \text{Br } \mathcal{Y} \xrightarrow{f^*} \text{Br } X \xrightarrow{\rho^* - p_2^*} \text{Br}(G \times_k X),$$

where $\rho, p_2 : G \times_k X \rightarrow X$ is the action and projection.

- Extend classical one by Sansuc [San81].

Sansuc's exact sequence

- Let X be a k -var. and G a **connected** k -group acting on X .
- Let $\mathcal{Y} = [X/G]$ be the **quo. stack**, i.e., $f : X \rightarrow \mathcal{Y}$ is in $\text{Tors}(\mathcal{Y}, G)$.
- Let $\mathbf{U} = \mathbf{G}_m/k^\times$, $\text{Pic} = H_{\text{ét}}^1(-, \mathbf{G}_m) \in \mathcal{P}(\mathcal{S}\text{ch}_k)$.

Theorem 3.1 ([LW23])

Have the exact sequence

$$0 \rightarrow \mathbf{U} \mathcal{Y} \xrightarrow{f^*} \mathbf{U} X \rightarrow \mathbf{U} G \rightarrow \text{Pic } \mathcal{Y} \xrightarrow{f^*} \text{Pic } X \rightarrow \text{Pic } G \rightarrow \\ \text{Br } \mathcal{Y} \xrightarrow{f^*} \text{Br } X \xrightarrow{\rho^* - p_2^*} \text{Br}(G \times_k X),$$

where $\rho, p_2 : G \times_k X \rightarrow X$ is the action and projection.

- Extend classical one by Sansuc [San81].

Torsionness of the Brauer group

- Grothendieck [Gro68] showed that $\mathrm{Br} X$ is torsion for a regular scheme X .

Corollary 3.2 ([LW23])

Let $\mathcal{X} \in \mathcal{C}\mathrm{hp}_{/k}$ which can be covered by finitely many open substacks $[X_i/G_i]$ where X_i is a smooth k -var. and G_i a linear k -group acting on X_i . Then $\mathrm{Br} \mathcal{X}$ is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular Noetherian Deligne-Mumford stack are torsion.

Torsionness of the Brauer group

- Grothendieck [Gro68] showed that $\mathrm{Br} X$ is torsion for a regular scheme X .

Corollary 3.2 ([LW23])

Let $\mathcal{X} \in \mathcal{C}\mathrm{hp}_{/k}$ which can be covered by finitely many open substacks $[X_i/G_i]$ where X_i is a smooth k -var. and G_i a linear k -group acting on X_i . Then $\mathrm{Br} \mathcal{X}$ is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular Noetherian Deligne-Mumford stack are torsion.

Torsionness of the Brauer group

- Grothendieck [Gro68] showed that $\mathrm{Br} X$ is torsion for a regular scheme X .

Corollary 3.2 ([LW23])

Let $\mathcal{X} \in \mathcal{C}\mathrm{hp}_{/k}$ which can be covered by finitely many open substacks $[X_i/G_i]$ where X_i is a smooth k -var. and G_i a linear k -group acting on X_i . Then $\mathrm{Br} \mathcal{X}$ is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular Noetherian Deligne-Mumford stack are torsion.

Torsionness of the Brauer group

- Grothendieck [Gro68] showed that $\mathrm{Br} X$ is torsion for a regular scheme X .

Corollary 3.2 ([LW23])

Let $\mathcal{X} \in \mathcal{C}\mathrm{hp}_{/k}$ which can be covered by finitely many open substacks $[X_i/G_i]$ where X_i is a smooth k -var. and G_i a linear k -group acting on X_i . Then $\mathrm{Br} \mathcal{X}$ is torsion.

Remark

Antieau and Meier [AM20] showed that Brauer groups of regular Noetherian Deligne-Mumford stack are torsion.

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

- Calculation of Brauer groups
- **Descent theory and the Brauer-Manin pairing**
- Comparison to other cohomological. obs.
- Descent for Brauer-Manin set along a torsor
- Brauer-Manin set under a product

4 What's next ?

- Cohomological descent
- Open problems

Fundamental exact sequence

- Let $D(k)$ be derived category of complexes of k -modules.
- Let S be a k -group of **multiplicative type**,
- whose Cartier dual \hat{S} is a finitely generated k -module.
- Let $p : \mathcal{X} \rightarrow \text{Spec } k$ be an alg. stack, and $\text{KD}'(\mathcal{X})$ be cone of $\mathbf{G}_m[1] \rightarrow Rp_*\mathbf{G}_m[1]$ in $D(k)$.

Theorem 3.3 ([LW23])

Have the **fundamental exact sequence**

$$0 \rightarrow H^1(k, S) \xrightarrow{p^*} H^1_{\text{fppf}}(\mathcal{X}, S) \xrightarrow{\chi} \text{Hom}_{D(k)}(\hat{S}, \text{KD}'(\mathcal{X})) \xrightarrow{\partial} H^2(k, S) \xrightarrow{p^*} H^2_{\text{fppf}}(\mathcal{X}, S),$$

where the map χ is the **extended type**.

Fundamental exact sequence

- Let $D(k)$ be derived category of complexes of k -modules.
- Let S be a k -group of **multiplicative type**,
- whose Cartier dual \hat{S} is a finitely generated k -module.
- Let $p : \mathcal{X} \rightarrow \text{Spec } k$ be an alg. stack, and $\text{KD}'(\mathcal{X})$ be cone of $\mathbf{G}_m[1] \rightarrow Rp_*\mathbf{G}_m[1]$ in $D(k)$.

Theorem 3.3 ([LW23])

Have the **fundamental exact sequence**

$$0 \rightarrow H^1(k, S) \xrightarrow{p^*} H^1_{\text{fppf}}(\mathcal{X}, S) \xrightarrow{\chi} \text{Hom}_{D(k)}(\hat{S}, \text{KD}'(\mathcal{X})) \xrightarrow{\partial} \\ H^2(k, S) \xrightarrow{p^*} H^2_{\text{fppf}}(\mathcal{X}, S),$$

where the map χ is the **extended type**.

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

- Calculation of Brauer groups
- Descent theory and the Brauer-Manin pairing
- **Comparison to other cohomological. obs.**
- Descent for Brauer-Manin set along a torsor
- Brauer-Manin set under a product

4 What's next ?

- Cohomological descent
- Open problems

Comparison of obstructions

Theorem 3.4 ([LW23])

Let \mathcal{X} be a smooth alg. k -stack of f.t. that is either DM or Zariski-locally quo. of k -var. by a linear k -group. Then

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} = \mathcal{X}(\mathbf{A}_k)^{\text{2-desc}}.$$

Theorem 3.5 ([LW23])

Let \mathcal{X} be an alg. k -stack. Then

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} \subseteq \mathcal{X}(\mathbf{A}_k)^{\text{conn}}.$$

- Extend Harari [Har02].

Comparison of obstructions

Theorem 3.4 ([LW23])

Let \mathcal{X} be a smooth alg. k -stack of f.t. that is either DM or Zariski-locally quo. of k -var. by a linear k -group. Then

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} = \mathcal{X}(\mathbf{A}_k)^{\text{2-desc}}.$$

Theorem 3.5 ([LW23])

Let \mathcal{X} be an alg. k -stack. Then

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} \subseteq \mathcal{X}(\mathbf{A}_k)^{\text{conn}}.$$

- Extend Harari [Har02].

Comparison of obstructions

Theorem 3.4 ([LW23])

Let \mathcal{X} be a smooth alg. k -stack of f.t. that is either DM or Zariski-locally quo. of k -var. by a linear k -group. Then

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} = \mathcal{X}(\mathbf{A}_k)^{\text{2-desc}}.$$

Theorem 3.5 ([LW23])

Let \mathcal{X} be an alg. k -stack. Then

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} \subseteq \mathcal{X}(\mathbf{A}_k)^{\text{conn}}.$$

- Extend Harari [Har02].

Comparison of obstructions (cont.)

Theorem 3.6 ([WL24])

Let \mathcal{X} be an algebraic k -stack. Then we have

$$\mathcal{X}(\mathbf{A}_k)^{\text{desc}} = \mathcal{X}(\mathbf{A}_k)^{\text{fin,desc}}.$$

- Extend [Sko09, CDX19].

Comparison of obstructions (cont.)

Theorem 3.6 ([WL24])

Let \mathcal{X} be an algebraic k -stack. Then we have

$$\mathcal{X}(\mathbf{A}_k)^{\text{desc}} = \mathcal{X}(\mathbf{A}_k)^{\text{fin,desc}}.$$

- Extend [Sko09, CDX19].

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

- Calculation of Brauer groups
- Descent theory and the Brauer-Manin pairing
- Comparison to other cohomological. obs.
- **Descent for Brauer-Manin set along a torsor**
- Brauer-Manin set under a product

4 What's next ?

- Cohomological descent
- Open problems

Descent for Brauer-Manin set along a torsor

- Let $\mathcal{X} = [Y/G]$ where Y is a smooth geometrically integral k -var. and G a conn. linear k -group acting on Y .
- Let $f : Y \rightarrow \mathcal{X}$ be the canonic map making Y a G -torsor over \mathcal{X} .
- One also defines **invariant Brauer subgroup** (as in Cao [Cao18]) to be

$$\mathrm{Br}_G \mathcal{X} = \{b \in \mathrm{Br} \mathcal{X} \mid \rho^* b - p_2^* b \in p_1^* \mathrm{Br} G\}$$

Theorem 3.7 ([LW23])

Have

$$\mathcal{X}(\mathbf{A}_k)^{\mathrm{Br}} = \bigcup_{\sigma \in H^1(k, G)} f_\sigma(Y_\sigma(\mathbf{A}_k)^{\mathrm{Br}_{G_\sigma}(Y_\sigma)}).$$

- Key is to modify Sansuc exact seq. (Thm. 3.1) using Br_G .
- This extends Cao [Cao18].

Descent for Brauer-Manin set along a torsor

- Let $\mathcal{X} = [Y/G]$ where Y is a smooth geometrically integral k -var. and G a conn. linear k -group acting on Y .
- Let $f : Y \rightarrow \mathcal{X}$ be the canonic map making Y a G -torsor over \mathcal{X} .
- One also defines **invariant Brauer subgroup** (as in Cao [Cao18]) to be

$$\mathrm{Br}_G \mathcal{X} = \{b \in \mathrm{Br} \mathcal{X} \mid \rho^* b - p_2^* b \in p_1^* \mathrm{Br} G\}$$

Theorem 3.7 ([LW23])

Have

$$\mathcal{X}(\mathbf{A}_k)^{\mathrm{Br}} = \bigcup_{\sigma \in H^1(k, G)} f_\sigma(Y_\sigma(\mathbf{A}_k)^{\mathrm{Br}_{G_\sigma}(Y_\sigma)}).$$

- Key is to modify Sansuc exact seq. (Thm. 3.1) using Br_G .
- This extends Cao [Cao18].

Descent for Brauer-Manin set along a torsor

- Let $\mathcal{X} = [Y/G]$ where Y is a smooth geometrically integral k -var. and G a conn. linear k -group acting on Y .
- Let $f : Y \rightarrow \mathcal{X}$ be the canonic map making Y a G -torsor over \mathcal{X} .
- One also defines **invariant Brauer subgroup** (as in Cao [Cao18]) to be

$$\mathrm{Br}_G \mathcal{X} = \{b \in \mathrm{Br} \mathcal{X} \mid \rho^* b - p_2^* b \in p_1^* \mathrm{Br} G\}$$

Theorem 3.7 ([LW23])

Have

$$\mathcal{X}(\mathbf{A}_k)^{\mathrm{Br}} = \bigcup_{\sigma \in H^1(k, G)} f_\sigma(Y_\sigma(\mathbf{A}_k)^{\mathrm{Br}_{G_\sigma}(Y_\sigma)}).$$

- Key is to modify Sansuc exact seq. (Thm. 3.1) using Br_G .
- This extends Cao [Cao18].

Descent for Brauer-Manin set along a torsor

- Let $\mathcal{X} = [Y/G]$ where Y is a smooth geometrically integral k -var. and G a conn. linear k -group acting on Y .
- Let $f : Y \rightarrow \mathcal{X}$ be the canonic map making Y a G -torsor over \mathcal{X} .
- One also defines **invariant Brauer subgroup** (as in Cao [Cao18]) to be

$$\mathrm{Br}_G \mathcal{X} = \{b \in \mathrm{Br} \mathcal{X} \mid \rho^* b - p_2^* b \in p_1^* \mathrm{Br} G\}$$

Theorem 3.7 ([LW23])

Have

$$\mathcal{X}(\mathbf{A}_k)^{\mathrm{Br}} = \bigcup_{\sigma \in H^1(k, G)} f_\sigma(Y_\sigma(\mathbf{A}_k)^{\mathrm{Br}_{G_\sigma}(Y_\sigma)}).$$

- Key is to modify Sansuc exact seq. (Thm. 3.1) using Br_G .
- This extends Cao [Cao18].

Descent for Brauer-Manin set along a torsor

- Let $\mathcal{X} = [Y/G]$ where Y is a smooth geometrically integral k -var. and G a conn. linear k -group acting on Y .
- Let $f : Y \rightarrow \mathcal{X}$ be the canonic map making Y a G -torsor over \mathcal{X} .
- One also defines **invariant Brauer subgroup** (as in Cao [Cao18]) to be

$$\text{Br}_G \mathcal{X} = \{b \in \text{Br } \mathcal{X} \mid \rho^* b - p_2^* b \in p_1^* \text{Br } G\}$$

Theorem 3.7 ([LW23])

Have

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} = \bigcup_{\sigma \in H^1(k, G)} f_\sigma(Y_\sigma(\mathbf{A}_k)^{\text{Br}_{G_\sigma}(Y_\sigma)}).$$

- Key is to modify Sansuc exact seq. (Thm. 3.1) using Br_G .
- This extends Cao [Cao18].

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

- Calculation of Brauer groups
- Descent theory and the Brauer-Manin pairing
- Comparison to other cohomological. obs.
- Descent for Brauer-Manin set along a torsor
- **Brauer-Manin set under a product**

4 What's next ?

- Cohomological descent
- Open problems

Known results

- Let k be a number field.
- The [product preservation](#) property of Brauer-Manin set was first established by Skorobogatov and Zarhin [SZ14] for smooth geo. int. [projective \$k\$ -vars.](#),
- and later by me [Lv20] for [open ones](#).

Known results

- Let k be a number field.
- The [product preservation](#) property of Brauer-Manin set was first established by Skorobogatov and Zarhin [SZ14] for smooth geo. int. [projective \$k\$ -vars.](#),
- and later by me [Lv20] for [open ones](#).

Product of alg. stacks

Theorem 3.8 ([LW23])

The functor

$$-(\mathbf{A}_k)^{\text{Br}} : (\mathcal{C}\text{hp}_1)_{/k} \rightarrow \mathcal{S}\text{et}$$

preserves finite product, where $(\mathcal{C}\text{hp}_1)_{/k} \subset \mathcal{C}\text{hp}_{/k}$ is the full sub-2-category spanned by smooth alg. k -stacks of f.t

- admitting separated and geo. int. atlases X s.t. $X(\mathbf{A}_k)^{\text{Br}} \neq \emptyset$,
- and is either DM or Zariski-locally quo. of k -var. by linear k -groups.

Product of alg. stacks

Theorem 3.8 ([LW23])

The functor

$$-(\mathbf{A}_k)^{\text{Br}} : (\mathcal{C}\text{hp}_1)_{/k} \rightarrow \mathcal{S}\text{et}$$

preserves finite product, where $(\mathcal{C}\text{hp}_1)_{/k} \subset \mathcal{C}\text{hp}_{/k}$ is the full sub-2-category spanned by smooth alg. k -stacks of f.t

- admitting separated and geo. int. atlases X s.t. $X(\mathbf{A}_k)^{\text{Br}} \neq \emptyset$,
- and is either DM or Zariski-locally quos. of k -var. by linear k -groups.

Corollary 3.9 ([LW23])

If \mathcal{X} and \mathcal{Y} are stacks quos. of smooth geo. int. k -varieties by conn. linear k -groups. Then

$$\mathcal{X}(\mathbf{A}_k)^{\text{Br}} \times \mathcal{Y}(\mathbf{A}_k)^{\text{Br}} \xrightarrow{\sim} (\mathcal{X} \times_k \mathcal{Y})(\mathbf{A}_k)^{\text{Br}}$$

Outline

1 Background

- Basic definition

2 Classical & known results

- Relations between obstructions on varieties
- Local-global principle

3 Main results

- Calculation of Brauer groups
- Descent theory and the Brauer-Manin pairing
- Comparison to other cohomological. obs.
- Descent for Brauer-Manin set along a torsor
- Brauer-Manin set under a product

4 What's next ?

- Cohomological descent
- Open problems

Motivation

- Recall in [Theorem 3.5](#), how to show the converse inclusion ?
- Want a way both carrying obstructions and satisfying descent.
- A formalism of cohomological descent encoding adèlic points and obstructions.
- Applying [\[LZ17\]](#).

Motivation

- Recall in [Theorem 3.5](#), how to show the converse inclusion ?
- Want a way both carrying obstructions and satisfying descent.
- A formalism of cohomological descent encoding adèlic points and obstructions.
- Applying [\[LZ17\]](#).

Motivation

- Recall in [Theorem 3.5](#), how to show the converse inclusion ?
- Want a way both carrying obstructions and satisfying descent.
- A formalism of cohomological descent encoding adèlic points and obstructions.
- Applying [\[LZ17\]](#).

Motivation

- Recall in [Theorem 3.5](#), how to show the converse inclusion ?
- Want a way both carrying obstructions and satisfying descent.
- A formalism of cohomological descent encoding adèlic points and obstructions.
- Applying [\[LZ17\]](#).

Motivation

- Recall in [Theorem 3.5](#), how to show the converse inclusion ?
- Want a way both carrying obstructions and satisfying descent.
- A formalism of cohomological descent encoding adèlic points and obstructions.
- Applying [\[LZ17\]](#).

Main result

Theorem 4.1 ([Lv24])

Let $\Lambda \in \mathcal{R}\text{ing}_{\square\text{-tor}}$. Then there is a **functor**

$$\mathcal{C}^{\text{obs}} : N(\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square})^{\text{op}} \rightarrow \mathcal{P}\text{r}^L$$

such that for any $f : X_0 \rightarrow X_{-1}$ being a smooth surjective map in $\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ and $X_{\bullet} : N(\Delta_+)^{\text{op}} \rightarrow \mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ its Čech nerve, the map is an equivalence

$$\mathcal{C}^{\text{obs}}(X_{-1}) \rightarrow \varprojlim_{n \in \Delta} \mathcal{C}^{\text{obs}}(X_n).$$

- The presentable ∞ -category $\mathcal{C}^{\text{obs}}(X)$ “contained in” $\text{Fun}(\mathcal{D}(A), \mathcal{D}(X))$ is the “smallest” one containing all x_* , $x \in X(A)^{\text{obs}}$, in a functorial way.

Main result

Theorem 4.1 ([Lv24])

Let $\Lambda \in \mathcal{R}\text{ing}_{\square\text{-tor}}$. Then there is a **functor**

$$\mathcal{C}^{\text{obs}} : N(\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square})^{\text{op}} \rightarrow \mathcal{P}\text{r}^L$$

such that for any $f : X_0 \rightarrow X_{-1}$ being a smooth surjective map in $\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ and $X_{\bullet} : N(\Delta_+)^{\text{op}} \rightarrow \mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ its Čech nerve, the map is an equivalence

$$\mathcal{C}^{\text{obs}}(X_{-1}) \rightarrow \varprojlim_{n \in \Delta} \mathcal{C}^{\text{obs}}(X_n).$$

- The presentable ∞ -category $\mathcal{C}^{\text{obs}}(X)$ “contained in” $\text{Fun}(\mathcal{D}(A), \mathcal{D}(X))$ is the “smallest” one containing all x_* , $x \in X(A)^{\text{obs}}$, in a functorial way.

Main result

Theorem 4.1 ([Lv24])

Let $\Lambda \in \mathcal{R}\text{ing}_{\square\text{-tor}}$. Then there is a **functor**

$$\mathcal{C}^{\text{obs}} : N(\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square})^{\text{op}} \rightarrow \mathcal{P}\text{r}^L$$

such that for any $f : X_0 \rightarrow X_{-1}$ being a smooth surjective map in $\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ and $X_{\bullet} : N(\Delta_+)^{\text{op}} \rightarrow \mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ its Čech nerve, the map is an equivalence

$$\mathcal{C}^{\text{obs}}(X_{-1}) \rightarrow \varprojlim_{n \in \Delta} \mathcal{C}^{\text{obs}}(X_n).$$

- The presentable ∞ -category $\mathcal{C}^{\text{obs}}(X)$ “contained in” $\text{Fun}(\mathcal{D}(A), \mathcal{D}(X))$ is the “**smallest**” one containing all x_* , $x \in X(A)^{\text{obs}}$, in a functorial way.

Main result

Theorem 4.1 ([Lv24])

Let $\Lambda \in \mathcal{R}\text{ing}_{\square\text{-tor}}$. Then there is a **functor**

$$\mathcal{C}^{\text{obs}} : N(\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square})^{\text{op}} \rightarrow \mathcal{P}\text{r}^L$$

such that for any $f : X_0 \rightarrow X_{-1}$ being a smooth surjective map in $\mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ and $X_{\bullet} : N(\Delta_+)^{\text{op}} \rightarrow \mathcal{C}\text{hp}_{/S}^{\text{lft}, \square}$ its Čech nerve, the map is an equivalence

$$\mathcal{C}^{\text{obs}}(X_{-1}) \rightarrow \varprojlim_{n \in \Delta} \mathcal{C}^{\text{obs}}(X_n).$$

- The presentable ∞ -category $\mathcal{C}^{\text{obs}}(X)$ “contained in” $\text{Fun}(\mathcal{D}(A), \mathcal{D}(X))$ is the “**smallest**” one containing all x_* , $x \in X(A)^{\text{obs}}$, in a functorial way.

Outline

- 1** Background
 - Basic definition
- 2** Classical & known results
 - Relations between obstructions on varieties
 - Local-global principle
- 3** Main results
 - Calculation of Brauer groups
 - Descent theory and the Brauer-Manin pairing
 - Comparison to other cohomological. obs.
 - Descent for Brauer-Manin set along a torsor
 - Brauer-Manin set under a product
- 4** What's next ?
 - Cohomological descent
 - Open problems

Open problems

- For $X \in \mathcal{C}\text{hp}_{/k}$,

- do we have

$$X(\mathbf{A}_k)^{\text{ét}, \text{Br}} = X(\mathbf{A}_k)^{\text{desc}} = X(\mathbf{A}_k)^{\text{desc,desc}} ?$$

(it is true for varieties)

- Is $X(\mathbf{A}_k)^{\text{2-desc,desc}}$ really **smaller** than $X(\mathbf{A}_k)^{\text{desc}}$?

Open problems

- For $X \in \mathcal{C}\text{hp}_{/k}$,
- do we have

$$X(\mathbf{A}_k)^{\text{ét}, \text{Br}} = X(\mathbf{A}_k)^{\text{desc}} = X(\mathbf{A}_k)^{\text{desc,desc}} ?$$

(it is true for varieties)

- Is $X(\mathbf{A}_k)^{\text{2-desc,desc}}$ really smaller than $X(\mathbf{A}_k)^{\text{desc}}$?

Open problems

- For $X \in \mathcal{C}\text{hp}_{/k}$,
- do we have

$$X(\mathbf{A}_k)^{\text{ét}, \text{Br}} = X(\mathbf{A}_k)^{\text{desc}} = X(\mathbf{A}_k)^{\text{desc,desc}} ?$$

(it is true for varieties)

- Is $X(\mathbf{A}_k)^{\text{2-desc,desc}}$ really **smaller** than $X(\mathbf{A}_k)^{\text{desc}}$?

Thanks for your attention.

- [AM20] Benjamin Antieau and Lennart Meier, *The Brauer group of the moduli stack of elliptic curves*, Algebra Number Theory **14** (2020), no. 9, 2295–2333. MR 4172709
- [BP22] Manjul Bhargava and Bjorn Poonen, *The local-global principle for integral points on stacky curves*, J. Algebraic Geom. **31** (2022), no. 4, 773–782. MR 4484553
- [Cao18] Yang Cao, *Approximation forte pour les variétés avec une action d'un groupe linéaire*, Compos. Math. **154** (2018), no. 4, 773–819. MR 3778194
- [Cao20] _____, *Sous-groupe de Brauer invariant et obstruction de descente itérée*, Algebra Number Theory **14** (2020), no. 8, 2151–2183. MR 4172704
- [CDX19] Yang Cao, Cyril Demarche, and Fei Xu, *Comparing descent obstruction and Brauer-Manin obstruction for open varieties*, Trans. Amer. Math. Soc. **371** (2019), no. 12, 8625–8650. MR 3955558
- [Dem09] Cyril Demarche, *Obstruction de descente et obstruction de Brauer-Manin étale*, Algebra Number Theory **3** (2009), no. 2, 237–254. MR 2491944
- [Gro68] Alexander Grothendieck, *Le groupe de Brauer. I-III. Dix exposés sur la cohomologie des schémas*, Adv. Stud. Pure Math., vol. 3, North-Holland, Amsterdam, 1968, pp. 46–66, 67–87, 88–188.
- [Har02] David Harari, *Groupes algébriques et points rationnels*, Math. Ann. **322** (2002), no. 4, 811–826. MR 1905103
- [HS13] Yonatan Harpaz and Tomer M. Schlank, *Homotopy obstructions to rational points*, Torsors, étale homotopy and applications to rational points, London Math. Soc. Lecture Note Ser., vol. 405, Cambridge Univ. Press, Cambridge, 2013, pp. 280–413. MR 3077173
- [Lv20] Chang Lv, *A note on the Brauer group and the Brauer-Manin set of a product*, Bull. Lond. Math. Soc. **52** (2020), no. 5, 932–941. MR 4171413
- [Lv24] _____, *Cohomological descent for obstructions to local-global principle*, in preparation (2024), 1–15.
- [LW23] Chang Lv and Han Wu, *The Brauer-Manin obstruction on algebraic stacks*, arXiv preprint arXiv:2306.14426v2 (2023), 1–16.

- [LZ17] Yifeng Liu and Weizhe Zheng, *Enhanced six operations and base change theorem for higher Artin stacks*, arXiv preprint arXiv: 1211.5948v3 (2017).
- [Poo10] Bjorn Poonen, *Insufficiency of the Brauer-Manin obstruction applied to étale covers*, Ann. of Math. (2) **171** (2010), no. 3, 2157–2169. MR 2680407
- [Poo17] ———, *Rational points on varieties*, vol. 186, American Mathematical Soc., 2017.
- [San81] J-J Sansuc, *Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres.*, Journal für die reine und angewandte Mathematik **327** (1981), 12–80.
- [Sko09] Alexei N. Skorobogatov, *Descent obstruction is equivalent to étale Brauer-Manin obstruction*, Math. Ann. **344** (2009), no. 3, 501–510. MR 2501300
- [Sto07] Michael Stoll, *Finite descent obstructions and rational points on curves*, Algebra Number Theory **1** (2007), no. 4, 349–391. MR 2368954
- [SZ14] Alexei N. Skorobogatov and Yuri G. Zarhin, *The Brauer group and the Brauer-Manin set of products of varieties*, J. Eur. Math. Soc. (JEMS) **16** (2014), no. 4, 749–768. MR 3191975
- [WL23] Han Wu and Chang Lv, *Genus one half stacky curves violating the local-global principle*, to appear on Journal de Théorie des Nombres de Bordeaux (2023), 1–5.
- [WL24] ———, *Iterated descent obstructions for algebraic stacks*, arXiv preprint arXiv:2409.20068 (2024), 1–9.